Wigner Matrix

Author(s):  
Victor Anisimov ◽  
James J.P. Stewart
Keyword(s):  
Author(s):  
Serban T Belinschi ◽  
Hari Bercovici ◽  
Mireille Capitaine

Abstract Given a selfadjoint polynomial $P(X,Y)$ in two noncommuting selfadjoint indeterminates, we investigate the asymptotic eigenvalue behavior of the random matrix $P(A_N,B_N)$, where $A_N$ and $B_N$ are independent Hermitian random matrices and the distribution of $B_N$ is invariant under conjugation by unitary operators. We assume that the empirical eigenvalue distributions of $A_N$ and $B_N$ converge almost surely to deterministic probability measures $\mu$ and $\nu$, respectively. In addition, the eigenvalues of $A_N$ and $B_N$ are assumed to converge uniformly almost surely to the support of $\mu$ and $\nu ,$ respectively, except for a fixed finite number of fixed eigenvalues (spikes) of $A_N$. It is known that almost surely the empirical distribution of the eigenvalues of $P(A_N,B_N)$ converges to a certain deterministic probability measure $\eta \ (\textrm{sometimes denoted}\ P^\square(\mu,\nu))$ and, when there are no spikes, the eigenvalues of $P(A_N,B_N)$ converge uniformly almost surely to the support of $\eta$. When spikes are present, we show that the eigenvalues of $P(A_N,B_N)$ still converge uniformly to the support of $\eta$, with the possible exception of certain isolated outliers whose location can be determined in terms of $\mu ,\nu ,P$, and the spikes of $A_N$. We establish a similar result when $B_N$ is replaced by a Wigner matrix. The relation between outliers and spikes is described using the operator-valued subordination functions of free probability theory. These results extend known facts from the special case in which $P(X,Y)=X+Y$.


Author(s):  
Patryk Pagacz ◽  
Michał Wojtylak

Abstract A sum of a large-dimensional random matrix polynomial and a fixed low-rank matrix polynomial is considered. The main assumption is that the resolvent of the random polynomial converges to some deterministic limit. A formula for the limit of the resolvent of the sum is derived, and the eigenvalues are localised. Four instances are considered: a low-rank matrix perturbed by the Wigner matrix, a product HX of a fixed diagonal matrix H and the Wigner matrix X and two special matrix polynomials of higher degree. The results are illustrated with various examples and numerical simulations.


2019 ◽  
Vol 09 (04) ◽  
pp. 2050013
Author(s):  
Mireille Capitaine

We study the fluctuations associated to the a.s. convergence of the outliers established by Belinschi–Bercovici–Capitaine of an Hermitian polynomial in a complex Wigner matrix and a spiked deterministic real diagonal matrix. Thus, we extend the nonuniversality phenomenon established by Capitaine–Donati-Martin–Féral for additive deformations of complex Wigner matrices, to any Hermitian polynomial. The result is described using the operator-valued subordination functions of free probability theory.


Author(s):  
Luigi Barletti

AbstractWe study the dynamics of classical localization in a simple, one-dimensional model of a tracking chamber. The emitted particle is represented by a superposition of Gaussian wave packets moving in opposite directions, and the detectors are two spins in fixed, opposite positions with respect to the central emitter. At variance with other similar studies, we give here a phase-space representation of the dynamics in terms of the Wigner matrix of the system. This allows a better visualization of the phenomenon and helps in its interpretation. In particular, we discuss the relationship of the localization process with the properties of entanglement possessed by the system.


2012 ◽  
Vol 01 (04) ◽  
pp. 1250011 ◽  
Author(s):  
FLORENT BENAYCH-GEORGES

We prove that for [Formula: see text] the eigenvectors matrix of a Wigner matrix, under some moments conditions, the bivariate random process [Formula: see text] converges in distribution to a bivariate Brownian bridge. This result has already been proved for GOE and GUE matrices. It is conjectured here that the necessary and sufficient condition, for the result to be true for a general Wigner matrix, is the matching of the moments of orders 1, 2 and 4 of the entries of the Wigner with the ones of a GOE or GUE matrix. Surprisingly, the third moment of the entries of the Wigner matrix has no influence on the limit distribution.


2020 ◽  
Vol 177 (3-4) ◽  
pp. 1103-1135
Author(s):  
Charles Bordenave ◽  
Gábor Lugosi ◽  
Nikita Zhivotovskiy

2014 ◽  
Vol 42 (5) ◽  
pp. 1980-2031 ◽  
Author(s):  
Antti Knowles ◽  
Jun Yin
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document