Oil and Gas Generation Potential Resources and Prognosed Highly Perspective Objects of Prospecting and Exploitation Activity in Precambrian and Cambrian Sedimentory Complexes of Siberian Platform

2021 ◽  
pp. 103-122
Author(s):  
D. I. Drobot ◽  
E. V. Krasyukov
Energies ◽  
2021 ◽  
Vol 14 (15) ◽  
pp. 4570
Author(s):  
Aman Turakhanov ◽  
Albina Tsyshkova ◽  
Elena Mukhina ◽  
Evgeny Popov ◽  
Darya Kalacheva ◽  
...  

In situ shale or kerogen oil production is a promising approach to developing vast oil shale resources and increasing world energy demand. In this study, cyclic subcritical water injection in oil shale was investigated in laboratory conditions as a method for in situ oil shale retorting. Fifteen non-extracted oil shale samples from Bazhenov Formation in Russia (98 °C and 23.5 MPa reservoir conditions) were hydrothermally treated at 350 °C and in a 25 MPa semi-open system during 50 h in the cyclic regime. The influence of the artificial maturation on geochemical parameters, elastic and microstructural properties was studied. Rock-Eval pyrolysis of non-extracted and extracted oil shale samples before and after hydrothermal exposure and SARA analysis were employed to analyze bitumen and kerogen transformation to mobile hydrocarbons and immobile char. X-ray computed microtomography (XMT) was performed to characterize the microstructural properties of pore space. The results demonstrated significant porosity, specific pore surface area increase, and the appearance of microfractures in organic-rich layers. Acoustic measurements were carried out to estimate the alteration of elastic properties due to hydrothermal treatment. Both Young’s modulus and Poisson’s ratio decreased due to kerogen transformation to heavy oil and bitumen, which remain trapped before further oil and gas generation, and expulsion occurs. Ultimately, a developed kinetic model was applied to match kerogen and bitumen transformation with liquid and gas hydrocarbons production. The nonlinear least-squares optimization problem was solved during the integration of the system of differential equations to match produced hydrocarbons with pyrolysis derived kerogen and bitumen decomposition.


2021 ◽  
Vol 76 (2) ◽  
pp. 191-203
Author(s):  
A. G. Kalmykov ◽  
D. R. Gafurova ◽  
M. S. Tikhonova ◽  
O. N. Vidishcheva ◽  
D. A. Ivanova ◽  
...  

Georesursy ◽  
2015 ◽  
Vol 60 (1) ◽  
pp. 46-53 ◽  
Author(s):  
A.A. Barenbaum ◽  

Author(s):  
D. A. Novikov

The unique material has been compiled on the hydrodynamics of oil and gas deposits of the Yamalo-Kara Depression for the first time in the last 30 years. The main feature of the region is the wide development of abnormally high formation pressures (Ka to 2.21) in both Jurassic and Lower Cretaceous horizons. Studying the filtration-capacitive properties and hydrodynamic characteristics of the Jurassic-Cretaceous reservoirs allows to established the predominate role of the elision water exchange in the formation of the modern hydrodynamic structure. At the depth of about 2–2.5 km elisional lithostatic system begins to acquire the features of elisional thermo-dehydration system. The extensive zones of piezomaxima (Bolshekhetskaya and Karskaya megasyneclise) at the present stage of development of the water-pressure basin system became internal areas of water pressure (supply) with a maximum degree of hydrogeological closeness. The vast zones of piezomaxima (the Bolshekhetskaya and Karskaya megasyneclises) became the inner regions of water pressuring (feeding) with the maximal degree of hydrogeological closeness of the interior at the current stage of the development of the water-pressure system in the basin. The areas of piezominima extending along the main sites of oil and gas generation are related to the largest zones of oil and gas accumulation (Vankoro-Suzunskaya, Bovanenkovskaya, Urengoyskaya and others). Currently, two types of natural water-pressure systems has been established in the region under investigation: elision in the inner regions (dominating within the Yamalo-Kara depression) and infiltration — in the basin margins of the West Siberian sedimentary basin.


Sign in / Sign up

Export Citation Format

Share Document