Solitary Chemosensory Cells in the Airways of Mammals

Author(s):  
A. Sbarbati ◽  
M.R. Cecchini ◽  
C. Crescimanno ◽  
F. Merigo ◽  
D. Benati ◽  
...  
Viruses ◽  
2021 ◽  
Vol 13 (8) ◽  
pp. 1653
Author(s):  
Jin-Seok Seo ◽  
Sun-Woo Yoon ◽  
Seung-Hyeon Hwang ◽  
Sung-Min Nam ◽  
Sang-Soep Nahm ◽  
...  

Patients infected with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the causative agent of coronavirus disease 2019, suffer from respiratory and non-respiratory symptoms. Among these symptoms, the loss of smell has attracted considerable attention. The objectives of this study were to determine which cells are infected, what happens in the olfactory system after viral infection, and how these pathologic changes contribute to olfactory loss. For this purpose, Syrian golden hamsters were used. First, we verified the olfactory structures in the nasal cavity of Syrian golden hamsters, namely the main olfactory epithelium, the vomeronasal organ, and their cellular components. Second, we found angiotensin-converting enzyme 2 expression, a receptor protein of SARS-CoV-2, in both structures and infections of supporting, microvillar, and solitary chemosensory cells. Third, we observed pathological changes in the infected epithelium, including reduced thickness of the mucus layer, detached epithelia, indistinct layers of epithelia, infiltration of inflammatory cells, and apoptotic cells in the overall layers. We concluded that a structurally and functionally altered microenvironment influences olfactory function. We observed the regeneration of the damaged epithelium, and found multilayers of basal cells, indicating that they were activated and proliferating to reconstitute the injured epithelium.


2018 ◽  
Vol 142 (2) ◽  
pp. 460-469.e7 ◽  
Author(s):  
Michael A. Kohanski ◽  
Alan D. Workman ◽  
Neil N. Patel ◽  
Li-Yin Hung ◽  
Julie P. Shtraks ◽  
...  

2014 ◽  
Vol 111 (16) ◽  
pp. 6075-6080 ◽  
Author(s):  
C. J. Saunders ◽  
M. Christensen ◽  
T. E. Finger ◽  
M. Tizzano

2021 ◽  
Vol 10 (23) ◽  
pp. 5601
Author(s):  
Antonio Caretta ◽  
Carla Mucignat-Caretta

Chemosensory systems (olfaction, taste, trigeminus nerve, solitary chemoreceptor cells, neuroendocrine pulmonary cells, and carotid body, etc.) detect molecules outside or inside our body and may share common molecular markers. In addition to the impairment of taste and olfaction, the detection of the internal chemical environment may also be incapacitated by COVID-19. If this is the case, different consequences can be expected. (1) In some patients, hypoxia does not trigger distressing dyspnea (“silent” hypoxia): Long-term follow-up may determine whether silent hypoxia is related to malfunctioning of carotid body chemoreceptors. Moreover, taste/olfaction and oxygen chemoreceptors may be hit simultaneously: Testing olfaction, taste, and oxygen chemoreceptor functions in the early stages of COVID-19 allows one to unravel their connections and trace the recovery path. (2) Solitary chemosensory cells are also involved in the regulation of the innate mucosal immune response: If these cells are affected in some COVID-19 patients, the mucosal innate immune response would be dysregulated, opening one up to massive infection, thus explaining why COVID-19 has lethal consequences in some patients. Similar to taste and olfaction, oxygen chemosensory function can be easily tested with a non-invasive procedure in humans, while functional tests for solitary chemosensory or pulmonary neuroendocrine cells are not available, and autoptic investigation is required to ascertain their involvement.


Author(s):  
B. Dnate’ Baxter ◽  
Eric D. Larson ◽  
Laetitia Merle ◽  
Paul Feinstein ◽  
Arianna Gentile Polese ◽  
...  

AbstractBackgroundUnderstanding viral infection of the olfactory epithelium is essential because the olfactory nerve is an important route of entry for viruses to the central nervous system. Specialized chemosensory epithelial cells that express the transient receptor potential cation channel subfamily M member 5 (TRPM5) are found throughout the airways and intestinal epithelium and are involved in responses to viral infection.ResultsHerein we performed deep transcriptional profiling of olfactory epithelial cells sorted by flow cytometry based on the expression of mCherry as a marker for olfactory sensory neurons and for eGFP in OMP-H2B::mCherry/TRPM5-eGFP transgenic mice (Mus musculus). We find profuse expression of transcripts involved in inflammation, immunity and viral infection in TRPM5-expressing microvillous cells.ConclusionOur study provides new insights into a potential role for TRPM5-expressing microvillous cells in viral infection of the olfactory epithelium. We find that, as found for solitary chemosensory cells (SCCs) and brush cells in the airway epithelium, and for tuft cells in the intestine, the transcriptome of TRPM5-expressing microvillous cells indicates that they are likely involved in the inflammatory response elicited by viral infection of the olfactory epithelium.


Sign in / Sign up

Export Citation Format

Share Document