scholarly journals The Evolution of Farming Systems and Agricultural Technology in Sub-Saharan Africa*

2019 ◽  
pp. 283-318
Author(s):  
Hans P. Binswanger ◽  
Prabhu L. Pingali
2021 ◽  
Vol 13 (4) ◽  
pp. 1926 ◽  
Author(s):  
Shiferaw Feleke ◽  
Steven Michael Cole ◽  
Haruna Sekabira ◽  
Rousseau Djouaka ◽  
Victor Manyong

The International Institute of Tropical Agriculture (IITA) has applied the concept of ‘circular bioeconomy’ to design solutions to address the degradation of natural resources, nutrient-depleted farming systems, hunger, and poverty in sub-Saharan Africa (SSA). Over the past decade, IITA has implemented ten circular bioeconomy focused research for development (R4D) interventions in several countries in the region. This article aims to assess the contributions of IITA’s circular bioeconomy focused innovations towards economic, social, and environmental outcomes using the outcome tracking approach, and identify areas for strengthening existing circular bioeconomy R4D interventions using the gap analysis method. Data used for the study came from secondary sources available in the public domain. Results indicate that IITA’s circular bioeconomy interventions led to ten technological innovations (bio-products) that translated into five economic, social, and environmental outcomes, including crop productivity, food security, resource use efficiency, job creation, and reduction in greenhouse gas emissions. Our gap analysis identified eight gaps leading to a portfolio of five actions needed to enhance the role of circular bioeconomy in SSA. The results showcase the utility of integrating a circular bioeconomy approach in R4D work, especially how using such an approach can lead to significant economic, social, and environmental outcomes. The evidence presented can help inform the development of a framework to guide circular bioeconomy R4D at IITA and other research institutes working in SSA. Generating a body of evidence on what works, including the institutional factors that create enabling environments for circular bioeconomy approaches to thrive, is necessary for governments and donors to support circular bioeconomy research that will help solve some of the most pressing challenges in SSA as populations grow and generate more waste, thus exacerbating a changing climate using the linear economy model.


1996 ◽  
Vol 25 (3) ◽  
pp. 157-164 ◽  
Author(s):  
Dana Berner ◽  
Robert Carsky ◽  
Kenton Dashiell ◽  
Jennifer Kling ◽  
Victor Manyong

Striga hermonthica, an obligate root parasite of grasses, Is one of the most severe constraints to cereal production in sub-Saharan Africa. In the recent past, prior to increased production pressure on land, S. hermonthica was controlled in African farming systems by prolonged crop rotations with bush fallow. Because of increasing need for food and concomitant changes in land management practices, however, these fallow rotations are no longer extensively used. Shorter crop rotations and fallow periods have also led to declines in soil fertility which present a very serious threat to African food production. A sustainable solution will be an integrated approach that simultaneously addresses both of these major problems. An integrated programme that replaces traditional bush fallow rotation with non-host nitrogen-fixing legume rotations, using cultivars selected for efficacy in germinating S. hermonthica seeds, is outlined. The programme includes use of S. hermonthlca-free planting material, biological control, cultural control to enhance biological suppressiveness, host-plant resistance, and host-seed treatments.


Sign in / Sign up

Export Citation Format

Share Document