A Land Management Based Approach to Integrated Striga hermonthica Control in sub-Saharan Africa

1996 ◽  
Vol 25 (3) ◽  
pp. 157-164 ◽  
Author(s):  
Dana Berner ◽  
Robert Carsky ◽  
Kenton Dashiell ◽  
Jennifer Kling ◽  
Victor Manyong

Striga hermonthica, an obligate root parasite of grasses, Is one of the most severe constraints to cereal production in sub-Saharan Africa. In the recent past, prior to increased production pressure on land, S. hermonthica was controlled in African farming systems by prolonged crop rotations with bush fallow. Because of increasing need for food and concomitant changes in land management practices, however, these fallow rotations are no longer extensively used. Shorter crop rotations and fallow periods have also led to declines in soil fertility which present a very serious threat to African food production. A sustainable solution will be an integrated approach that simultaneously addresses both of these major problems. An integrated programme that replaces traditional bush fallow rotation with non-host nitrogen-fixing legume rotations, using cultivars selected for efficacy in germinating S. hermonthica seeds, is outlined. The programme includes use of S. hermonthlca-free planting material, biological control, cultural control to enhance biological suppressiveness, host-plant resistance, and host-seed treatments.

2013 ◽  
Vol 2 (2) ◽  
pp. 99 ◽  
Author(s):  
Evans Atuti Atera ◽  
Takashige Ishii ◽  
John C. Onyango ◽  
Kazuyuki Itoh ◽  
Tetsushi Azuma

<p><em>Striga</em> spp. is considered to be the greatest biological constraint to food production in sub-Saharan Africa, a more serious problem than insects, birds and plant diseases. They are among the most specialized root-parasitic plants inflicting serious injury to their host depriving them water, minerals and photosynthate. The greatest diversity of <em>Striga </em>spp. occurs in grassland. However, <em>Striga hermonthica</em> mainly occurs in farmland infecting grasses. The parasite devastating effect is accomplished prior to its emergence from the soil. It may cause yield losses in cereals ranging from 15% under favourable conditions to 100% where several stress factors are involved, thereby affecting the livelihood of millions of resource-poor farmers. Piecemeal approach to address one aspect of <em>Striga</em> problem at a time has been a setback in technology transfer to producers. Future <em>Striga</em> control programs should not be conducted separately, but should rather be conducted in an integrated approach that combines research talents of various institutions. This will facilitate collaborative research and achieve qualitative interaction between stakeholders, which can easily produce reliable technologies that are practical and available to farmers. <em>Striga</em> being a pervasive pest, time is of essence in controlling it. There is an urgent need for the establishment of policies to promote, implement, and ensure a long-term sustainable <em>Striga</em> control program.</p>


2021 ◽  
Author(s):  
Samuel Eze ◽  
Andrew Dougill ◽  
Steven Banwart ◽  
Susannah Sallu ◽  
Rashid Mgohele ◽  
...  

&lt;p&gt;Soil health is key to building resilience into agricultural and food systems in sub-Saharan Africa (SSA), where climate change presents a major challenge and unsustainable land management practices have exacerbated land degradation. A suite of interventions labelled climate-smart agriculture (CSA) such as conservation agriculture (cover cropping, mulching, crop rotation, intercropping, minimum/zero tillage, crop residue management), soil and water conservation (contour planting, terraces and bunds, planting pits, and irrigation) and agroforestry are promoted in SSA to improve soil health but adoption among smallholder farmers remains low. A strong evidence base on the impacts of CSA interventions on soil health in different agro-ecosystems in SSA is lacking. This contributes to weak policies and institutional support as well as conflicting messages that farmers receive about CSA impacts, which limit their adoption and lead to disadoption. Farmers&amp;#8217; knowledge of their soils influences their land management decisions and is an important factor in the uptake of CSA interventions. Using a multi-method approach that combines conventional soil testing and farmers&amp;#8217; visual techniques, we examined the impacts of soil and water conservation techniques on soil health indicators in the East Usambara Mountains of Tanzania. The link between farmers&amp;#8217; soil knowledge and their land management decisions was also explored in a wider review of lessons from the African Highlands. Farmers&amp;#8217; observed changes in selected soil health indicators, which influenced their land management decisions did not always match results of conventional soil testing, highlighting the need for integrating farmers&amp;#8217; observational techniques and conventional soil testing for a more targeted and comprehensive assessment of soil health. A hybrid approach to soil assessment is outlined that could foster greater uptake of sustainable land management practices including CSA by farmers in SSA and should be proactively pursued by soil scientists to ensure that their efforts translate to actions by land managers.&lt;/p&gt;


2021 ◽  
Vol 13 (3) ◽  
pp. 1158
Author(s):  
Cecilia M. Onyango ◽  
Justine M. Nyaga ◽  
Johanna Wetterlind ◽  
Mats Söderström ◽  
Kristin Piikki

Opportunities exist for adoption of precision agriculture technologies in all parts of the world. The form of precision agriculture may vary from region to region depending on technologies available, knowledge levels and mindsets. The current review examined research articles in the English language on precision agriculture practices for increased productivity among smallholder farmers in Sub-Saharan Africa. A total of 7715 articles were retrieved and after screening 128 were reviewed. The results indicate that a number of precision agriculture technologies have been tested under SSA conditions and show promising results. The most promising precision agriculture technologies identified were the use of soil and plant sensors for nutrient and water management, as well as use of satellite imagery, GIS and crop-soil simulation models for site-specific management. These technologies have been shown to be crucial in attainment of appropriate management strategies in terms of efficiency and effectiveness of resource use in SSA. These technologies are important in supporting sustainable agricultural development. Most of these technologies are, however, at the experimental stage, with only South Africa having applied them mainly in large-scale commercial farms. It is concluded that increased precision in input and management practices among SSA smallholder farmers can significantly improve productivity even without extra use of inputs.


Agriculture ◽  
2021 ◽  
Vol 11 (4) ◽  
pp. 338
Author(s):  
Charity M. Wangithi ◽  
Beatrice W. Muriithi ◽  
Raphael Belmin

The invasive fruit fly Bactrocera dorsalis poses a major threat to the production and trade of mango in sub-Saharan Africa. Farmers devise different innovations to manage the pest in an attempt to minimize yield loss and production costs while maximizing revenues. Using survey data obtained from Embu County, Kenya, we analyzed farmers’ knowledge and perception as regards the invasive fruit fly, their innovations for the management of the pest, and the determinants of their adoption and dis-adoption decisions of recently developed and promoted integrated pest management (IPM) technologies for suppression of the pest. The results show that farmers consider fruit flies as a major threat to mango production (99%) and primarily depend on pesticides (90%) for the management of the pest. Some farmers (35%) however use indigenous methods to manage the pest. Though farmers possess good knowledge of different IPM strategies, uptake is relatively low. The regression estimates show that continued use of IPM is positively associated with the gender and education of the household head, size of a mango orchard, knowledge on mango pests, training, contact with an extension officer, and use of at least one non-pesticide practice for fruit fly management, while IPM dis-adoption was negatively correlated with the size of the mango orchard, practice score and use of indigenous innovations for fruit fly management. We recommend enhancing farmer′s knowledge through increased access to training programs and extension services for enhanced adoption of sustainable management practices for B. dorsalis.


2021 ◽  
Vol 13 (4) ◽  
pp. 1926 ◽  
Author(s):  
Shiferaw Feleke ◽  
Steven Michael Cole ◽  
Haruna Sekabira ◽  
Rousseau Djouaka ◽  
Victor Manyong

The International Institute of Tropical Agriculture (IITA) has applied the concept of ‘circular bioeconomy’ to design solutions to address the degradation of natural resources, nutrient-depleted farming systems, hunger, and poverty in sub-Saharan Africa (SSA). Over the past decade, IITA has implemented ten circular bioeconomy focused research for development (R4D) interventions in several countries in the region. This article aims to assess the contributions of IITA’s circular bioeconomy focused innovations towards economic, social, and environmental outcomes using the outcome tracking approach, and identify areas for strengthening existing circular bioeconomy R4D interventions using the gap analysis method. Data used for the study came from secondary sources available in the public domain. Results indicate that IITA’s circular bioeconomy interventions led to ten technological innovations (bio-products) that translated into five economic, social, and environmental outcomes, including crop productivity, food security, resource use efficiency, job creation, and reduction in greenhouse gas emissions. Our gap analysis identified eight gaps leading to a portfolio of five actions needed to enhance the role of circular bioeconomy in SSA. The results showcase the utility of integrating a circular bioeconomy approach in R4D work, especially how using such an approach can lead to significant economic, social, and environmental outcomes. The evidence presented can help inform the development of a framework to guide circular bioeconomy R4D at IITA and other research institutes working in SSA. Generating a body of evidence on what works, including the institutional factors that create enabling environments for circular bioeconomy approaches to thrive, is necessary for governments and donors to support circular bioeconomy research that will help solve some of the most pressing challenges in SSA as populations grow and generate more waste, thus exacerbating a changing climate using the linear economy model.


Author(s):  
Chinedu Egbunike ◽  
Nonso Okoye ◽  
Okoroji-Nma Okechukwu

Climate change is a major threat to agricultural food production globally and locally. It poses both direct and indirect effects on soil functions. Thus, agricultural management practices has evolved to adaptation strategies in order to mitigate the risks and threats from climate change. The study concludes with a recommendation the coconut farmers should explore the idea of soil biodiversity in a bid to mitigate the potential negative impact of climate related risk on the farming. The study proffers the need for adopting sustainable agricultural practices to boost local coconut production. This can contribute to the simultaneous realisation of two of the Sustainable Development Goals (SDGs) of the United Nations: SDG 2 on food security and sustainable agriculture and SDG 13 on action to combat climate change and its impacts. The study findings has implications for tackling climate change in Sub-Saharan Africa and in particular Nigeria in order to boost local agricultural production and coconut in particular without negative environmental consequences and an ability to cope with climate change related risks.


Sign in / Sign up

Export Citation Format

Share Document