Computational Modeling of Mass Transfer in Hollow Fiber Membrane-Based Separation Processes

2020 ◽  
pp. 81-96
Author(s):  
B. Swain ◽  
Ana-Maria Sastre ◽  
Anil K. Pabby
2020 ◽  
Vol 12 (6) ◽  
pp. 2207
Author(s):  
Benjamin Lukitsch ◽  
Paul Ecker ◽  
Martin Elenkov ◽  
Christoph Janeczek ◽  
Bahram Haddadi ◽  
...  

Computational fluid dynamics (CFD) provides a flexible tool for investigation of separation processes within membrane hollow fiber modules. By enabling a three-dimensional and time dependent description of the corresponding transport phenomena, very detailed information about mass transfer or geometrical influences can be provided. The high level of detail comes with high computational costs, especially since species transport simulations must discretize and resolve steep gradients in the concentration polarization layer at the membrane. In contrast, flow simulations are not required to resolve these gradients. Hence, there is a large gap in the scale and complexity of computationally feasible geometries when comparing flow and species transport simulations. A method, which tries to cover the mentioned gap, is presented in the present article. It allows upscaling of the findings of species transport simulations, conducted for reduced geometries, on the geometrical scales of flow simulations. Consequently, total transmembrane transport of complete modules can be numerically predicted. The upscaling method does not require any empirical correlation to incorporate geometrical characteristics but solely depends on results acquired by CFD flow simulations. In the scope of this research, the proposed method is explained, conducted, and validated. This is done by the example of CO2 removal in a prototype hollow fiber membrane oxygenator.


2021 ◽  
Vol 33 (1) ◽  
Author(s):  
Sher Ahmad ◽  
Gabriela Vollet Marson ◽  
Waheed Ur Rehman ◽  
Mohammad Younas ◽  
Sarah Farrukh ◽  
...  

Abstract Background In this research work, a coupled heat and mass transfer model was developed for salt recovery from concentrated brine water through an osmotic membrane distillation (OMD) process in a hollow fiber membrane contactor (HFMC).The model was built based on the resistance-in-series concept for water transport across the hydrophobic membrane. The model was adopted to incorporate the effects of polarization layers such as temperature and concentration polarization, as well as viscosity changes during concentration. Results The modeling equations were numerically simulated in MATLAB® and were successfully validated with experimental data from literature with a deviation within the range of 1–5%. The model was then applied to study the effects of key process parameters like feed concentrations, osmotic solution concentration, feed, and osmotic solution flow rates and feed temperature on the overall heat and mass transfer coefficient as well as on water transport flux to improve the process efficiency. The mass balance modeling was applied to calculate the membrane area based on the simulated mass transfer coefficient. Finally, a scale-up for the MD process for salt recovery on an industrial scale was proposed. Conclusions This study highlights the effect of key parameters for salt recovery from wastewater using the membrane distillation process. Further, the applicability of the OMD process for salt recovery on large scale was investigated. Sensitivity analysis was performed to identify the key parameters. From the results of this study, it is concluded that the OMD process can be promising in salt recovery from wastewater.


Desalination ◽  
2011 ◽  
Vol 275 (1-3) ◽  
pp. 126-132 ◽  
Author(s):  
Farzad Fadaei ◽  
Saeed Shirazian ◽  
Seyed Nezameddin Ashrafizadeh

2020 ◽  
Vol 250 ◽  
pp. 117209 ◽  
Author(s):  
Sher Ahmad ◽  
Gabriela Vollet Marson ◽  
Waheed Zeb ◽  
Waheed Ur Rehman ◽  
Mohammad Younas ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document