An experimental study on the post-cracking behavior of Polypropylene Fiber Reinforced Concrete core samples drilled from precast tunnel segments

Author(s):  
A. Mudadu ◽  
G. Tiberti ◽  
A. Conforti ◽  
I. Trabucchi ◽  
G.A. Plizzari
2021 ◽  
Vol 53 (2) ◽  
pp. 210209
Author(s):  
Aris Aryanto ◽  
Berto Juergen Winata

This paper focuses on comparing the behavior of RC tension members with and without the addition of polypropylene fibers at various corrosion levels. Eight cylindrical tensile specimens were tested to evaluate their tension-stiffening and cracking behavior. The content of polypropylene fiber added into the concrete mix was the main variable (0.25%, 0.50%, 0.75%, and 1.0% of total volume). The corrosion level was varied from slight (5%), medium (10%) to severe (30%) and, like the other variables, applied only to 1.0% polypropylene fiber-reinforced concrete (PFRC) specimens. The test results showed that the fiber addition significantly increased the tension-stiffening effect but was largely unable to reduce the effect of bond degradation caused by corrosion. Moreover, the addition of polypropylene fibers was able to improve the cracking behavior in terms of crack propagation, as shown by smaller crack spacing compared to the specimen without fiber addition at the same corrosion level.


2011 ◽  
Vol 261-263 ◽  
pp. 156-160 ◽  
Author(s):  
Zhi Gang Ren ◽  
Peng Tao Hu ◽  
You Zou

The Steel-polypropylene fiber reinforced concrete take full advantage of steel fiber’s macro-scale crack resistance function on the concrete as well as the polypropylene fiber’s micro-scale crack resistance and toughening effect on the concrete matrix. In this paper, the three kinds of concrete specimens including plain high-strength concrete, steel fiber reinforced concrete and steel-polypropylene fiber concrete are selected for a flexural toughness experimental study, their compressive strength and deformation performance are analyzed, and their toughness index are investigated with ASTM-C1018 and PCS(post-crack strength) method. The results show that steel-polypropylene fiber reinforced concrete has better strength and toughness property as well as deformation performance.


Sign in / Sign up

Export Citation Format

Share Document