Long-Term Uncertainty of Renewable Energy Generation

Author(s):  
Ning Zhang ◽  
Chongqing Kang ◽  
Ershun Du ◽  
Yi Wang
2019 ◽  
Vol 9 (1) ◽  
Author(s):  
Nousheen Fatima ◽  
Yanbin Li ◽  
Munir Ahmad ◽  
Gul Jabeen ◽  
Xiaoyu Li

Abstract Background The current research attempts to systematically investigate the causal interactions between renewable energy generation, aggregated energy use, human capital, and economic performance in Pakistan both in a short-term and long-term test for the period of 1990–2016. Methods As a primary step, a unit root analysis was conducted employing, among others, an augmented Dickey-Fuller-generalized least squares (ADF-GLS) test. Based on the order of integration I(1), the Johansen and Juselius (JJ) co-integration testing was employed to confirm a long-term causality analysis, which was followed by a vector error correction model (VECM) to calculate the short-run Granger causality analysis. Furthermore, the vector autoregressive (VAR)-based Cholesky test allowed the standard deviation impulse response functions to be generated to explain the responses of variables to arbitrary shocks in the data series under analysis. Results The empirical findings unearthed the bilateral causal connection between aggregated energy use and economic performance, renewable energy generation and economic performance, and human capital and economic performance. Thus, it confirmed the existence of feedback effects for aggregated energy use, renewable energy generation, and human capital in their relation to economic performance. Likewise, a unilateral positive causal connection was revealed running from renewable energy generation and human capital to aggregated energy use, and from human capital to renewable energy generation in both a long-term and short-term test. Additionally, the causal association running from aggregated energy use and renewable energy generation to economic performance was exposed in a long-term as well as short-term test, hence supporting the growth hypothesis. Conclusions The findings signified the importance of an enhanced generation of renewable energy along with the promotion of an aggregated energy use for the economic performance in Pakistan.


Energies ◽  
2022 ◽  
Vol 15 (1) ◽  
pp. 302
Author(s):  
Yuchen Yang ◽  
Kavan Javanroodi ◽  
Vahid M. Nik

Climate change can strongly affect renewable energy production. The state of the art in projecting future renewable energy generation has focused on using regional climate prediction. However, regional climate prediction is characterized by inherent uncertainty due to the complexity of climate models. This work provides a comprehensive study to quantify the impact of climate uncertainties in projecting future renewable energy potential over five climate zones of Europe. Thirteen future climate scenarios, including five global climate models (GCMs) and three representative concentration pathways (RCPs), are downscaled by the RCA4 regional climate model (RCM) over 90 years (2010–2099), divided into three 30-year periods. Solar and wind energy production is projected considering short-/long-term climate variations and uncertainties in seven representative cities (Narvik, Gothenburg, Munich, Antwerp, Salzburg, Valencia, and Athens). The results showed that the uncertainty caused by GCMs has the most substantial impact on projecting renewable energy generation. The variations due to GCM selection can become even larger than long-term climate change variations over time. Climate change uncertainties lead to over 23% and 45% projection differences for solar PV and wind energy potential, respectively. While the signal of climate change in solar radiation is weak between scenarios and over time, wind energy generation is affected by 25%.


2021 ◽  
Vol 139 ◽  
pp. 110695
Author(s):  
KM Nazmul Islam ◽  
Tapan Sarker ◽  
Farhad Taghizadeh-Hesary ◽  
Anashuwa Chowdhury Atri ◽  
Mohammad Shafiul Alam

Sign in / Sign up

Export Citation Format

Share Document