Cell Immobilization and Its Applications in Biotechnology

Author(s):  
Ronnie G. Willaert
Keyword(s):  
Fermentation ◽  
2021 ◽  
Vol 7 (3) ◽  
pp. 112
Author(s):  
Grazia Alberico ◽  
Angela Capece ◽  
Gianluigi Mauriello ◽  
Rocchina Pietrafesa ◽  
Gabriella Siesto ◽  
...  

In recent years, as a consequence of the re-evaluation of the role of non-Saccharomyces yeasts, several studies have been conducted on the use of controlled mixed fermentations with Saccharomyces and different non-Saccharomyces yeast species from the winemaking environment. To benefit from the metabolic particularities of some non-Saccharomyces yeasts, the management of a non-Saccharomyces strain in mixed fermentation is a crucial step, in particular the use of procedures addressed to increase the persistence of non-Saccharomyces strains during the fermentative process. The use of microencapsulation for cell immobilization might represent a strategy for enhancing the competitiveness of non-Saccharomyces yeasts during mixed fermentation. This study was aimed to assess the fermentative performance of a mixed starter culture, composed by a wild Hanseniaspora osmophila strain (ND1) and a commercial Saccharomyces cerevisiae strain (EC1118). For this purpose, free and microencapsulated cells of ND1 strain were tested in co-culture with EC1118 during mixed fermentations in order to evaluate the effect of the microencapsulation on fermentative behavior of mixed starter and final wine composition. The data have shown that H. osmophila cell formulation affects the persistence of both ND1 and EC1118 strains during fermentations and microencapsulation resulted in a suitable system to increase the fermentative efficiency of ND1 strain during mixed starter fermentation.


1989 ◽  
Vol 3 (2) ◽  
pp. 139-144 ◽  
Author(s):  
Dong Jin Kim ◽  
Ho Nam Chang ◽  
Jang Ryol Liu

2021 ◽  
Author(s):  
Ville Rissanen ◽  
Sindhujaa Vajravel ◽  
Sergey Kosourov ◽  
Suvi Arola ◽  
Eero Kontturi ◽  
...  

Cell immobilization is a promising approach to create efficient photosynthetic cell factories for sustainable chemicals production. Here, we demonstrate a novel photosynthetic solid-state cell factory design for sustainable biocatalytic ethylene...


Author(s):  
Mattheus Goosen ◽  
Branko Bugarski ◽  
Bojana Obradovic ◽  
Viktor Nedovic

Sign in / Sign up

Export Citation Format

Share Document