Augmented Analytics for Data Mining: A Formal Framework and Methodology

Author(s):  
Charu Chandra ◽  
Vijayaraja Thiruvengadam ◽  
Amber MacKenzie
Keyword(s):  
2011 ◽  
Vol 7 (1) ◽  
pp. 24-45 ◽  
Author(s):  
Roberto Trasarti ◽  
Fosca Giannotti ◽  
Mirco Nanni ◽  
Dino Pedreschi ◽  
Chiara Renso

The technologies of mobile communications and ubiquitous computing pervade society. Wireless networks sense the movement of people and vehicles, generating large volumes of mobility data, such as mobile phone call records and GPS tracks. This data can produce useful knowledge, supporting sustainable mobility and intelligent transportation systems, provided that a suitable knowledge discovery process is enacted for mining this mobility data. In this paper, the authors examine a formal framework, and the associated implementation, for a data mining query language for mobility data, created as a result of a European-wide research project called GeoPKDD (Geographic Privacy-Aware Knowledge Discovery and Delivery). The authors discuss how the system provides comprehensive support for the Mobility Knowledge Discovery process and illustrate its analytical power in unveiling the complexity of urban mobility in a large metropolitan area, based on a massive real life GPS dataset.


2017 ◽  
Vol 19 (5) ◽  
pp. 5-24
Author(s):  
Gérard D’Aubigny

Most data mining projects in spatial economics start with an evaluation of a set of attribute variables on a sample of spatial entities, looking for the existence and strength of spatial autocorrelation, based on the Moran’s and the Geary’s coefficients, the adequacy of which is rarely challenged, despite the fact that when reporting on their properties, many users seem likely to make mistakes and to foster confusion. My paper begins by a critical appraisal of the classical definition and rational of these indices. I argue that while intuitively founded, they are plagued by an inconsistency in their conception. Then, I propose a principled small change leading to corrected spatial autocorrelation coefficients, which strongly simplifies their relationship, and opens the way to an augmented toolbox of statistical methods of dimension reduction and data visualization, also useful for modeling purposes. A second section presents a formal framework, adapted from recent work in statistical learning, which gives theoretical support to our definition of corrected spatial autocorrelation coefficients. More specifically, the multivariate data mining methods presented here, are easily implementable on the existing (free) software, yield methods useful to exploit the proposed corrections in spatial data analysis practice, and, from a mathematical point of view, whose asymptotic behavior, already studied in a series of papers by Belkin & Niyogi, suggests that they own qualities of robustness and a limited sensitivity to the Modifiable Areal Unit Problem (MAUP), valuable in exploratory spatial data analysis.


2020 ◽  
Author(s):  
Mohammed J. Zaki ◽  
Wagner Meira, Jr
Keyword(s):  

2010 ◽  
Vol 24 (2) ◽  
pp. 112-119 ◽  
Author(s):  
F. Riganello ◽  
A. Candelieri ◽  
M. Quintieri ◽  
G. Dolce

The purpose of the study was to identify significant changes in heart rate variability (an emerging descriptor of emotional conditions; HRV) concomitant to complex auditory stimuli with emotional value (music). In healthy controls, traumatic brain injured (TBI) patients, and subjects in the vegetative state (VS) the heart beat was continuously recorded while the subjects were passively listening to each of four music samples of different authorship. The heart rate (parametric and nonparametric) frequency spectra were computed and the spectra descriptors were processed by data-mining procedures. Data-mining sorted the nu_lf (normalized parameter unit of the spectrum low frequency range) as the significant descriptor by which the healthy controls, TBI patients, and VS subjects’ HRV responses to music could be clustered in classes matching those defined by the controls and TBI patients’ subjective reports. These findings promote the potential for HRV to reflect complex emotional stimuli and suggest that residual emotional reactions continue to occur in VS. HRV descriptors and data-mining appear applicable in brain function research in the absence of consciousness.


Sign in / Sign up

Export Citation Format

Share Document