Numerical analysis of stress-strain state of vertical steel tanks with defects

Author(s):  
A.S. Dmitrieva ◽  
A.M. Schipachev ◽  
А.А. Lyagova
2018 ◽  
Vol 22 (4) ◽  
pp. 66-74 ◽  
Author(s):  
A. A. Vasilkin

In steel tanks made by the method of rolling, defects of a geometric shape often occur in the area of the welded welded joint of the wall. Subsequently, in these areas, as a result of low cycle fatigue, an unacceptable defect appears in the form of a crack, which makes it necessary to remove the reservoir from operation and carry out a set of measures for its repair. To determine the terms of safe operation of vertical steel tanks with geometric defects, it is proposed to use the methodology control of the actions of structures of load-bearing structures, one of the directions of which is the regulation of the stress-strain state of steel structures. To implement the possibility of regulating construction, it is necessary to identify such parameters, the change of which will give the maximum effect in achieving the set goals. As the indicated parameters, the design characteristics (material properties, design scheme, geometric characteristics) and factors of external influences (load, operating conditions) can act. To regulate the stress-strain state design of vertical steel tanks, the following regulators are proposed: product loading height, wall deflection arrow and permissible number of tank loading cycles. By numerical calculation of the VAT of the vertical steel tank design with geometric defects, the necessary values and values of the stress state are determined. Further, using known analytical dependencies from the field of fracture mechanics, it is possible to determine the permissible number of loading cycles of the reservoir before the appearance of a crack-like defect. The application of the methodology control of the actions of structures load-bearing structures, by means of a certain change in the established control parameters, allows increasing the number of loading cycles of the reservoir, thereby increasing the period of safe operation of the defective reservoir and thereby increasing the economic efficiency of the tank farm.


2017 ◽  
Vol 265 ◽  
pp. 507-512
Author(s):  
M.S. Bisong ◽  
P.V. Sivtsev ◽  
V.V. Lepov

The numerical analysis of stress-strain state of low-alloyed welded steel samples test has been considered. The mechanical heterogeneity has been estimated by the micro hardness test. The stress-strain state analysis is based on the models of linear elasticity, which are described by Lame equations for displacement. In this case the samples are considered as perfect welded samples without any welding defects. The discretization of the system of equations is done through the finite element method, and the numerical realization of the method is performed on collection of free software FEniCS. The defects influence has been estimated by stochastic modelling of viscous crack growth. The data for crack size in weld and heat affected zone was obtain from microscopic observation, and for mechanical properties from microhardness testing. The result obtained shows that, the distribution of displacement in all samples are almost the same. Between the welded zone, the heat affected zone and the external elliptic zone, the Von Mizes stress is almost the same in all three samples. Concerning the crack growth, the velocity of it propagation in welded zone is higher as much again than that in the heat affected zone. This research is beneficial to welders, modellers of structures, researches as a whole.


Author(s):  
D. O. BANNIKOV ◽  
V. P. KUPRII ◽  
D. YU. VOTCHENKO

Purpose. Perform numerical analysis of the station structure. Take into account in the process of mathematical modeling the process of construction of station tunnels of a three-vaulted station. Obtain the regularities of the stress-strain state of the linings, which is influenced by the processes of soil excavation and lining construction. Methodology. To achieve this goal, a series of numerical calculations of models of the deep contour interval metro pylon station was performed. Three finite-element models have been developed, which reflect the stages of construction of a three-vaulted pylon station. Numerical analysis was performed on the basis of the finite element method, implemented in the calculation complex Lira for Windows. Modeling of the stress-strain state of the station tunnel linings and the soil massif was performed using rectangular, universal quadrangular and triangular finite elements, which take into account the special properties of the soil massif. Station tunnel linings are modeled by means of rod finite elements. Findings. Isofields of the stress-strain state in finite-element models reflecting the stages of construction are obtained. The vertical displacements and horizontal stresses that are characteristic of a three-vaulted pylon station are analyzed. The analysis of horizontal stresses proved that at the stage of opening of the middle tunnel the scheme of pylon operation is rather disadvantageous. The analysis of bending moments and normal forces was also carried out and the asymmetry of their distribution was noted. Originality. Based on the obtained patterns of distribution of stress-strain state and force factors, it is proved that numerical analysis of the station structure during construction is necessary to take measures to prevent or reduce deformation of frames that are in unfavorable conditions. Practical value. In the course of research, the regularities of changes in stresses, displacements, bending moments and normal forces in the models of the pylon station, which reflect the sequence of its construction, were obtained.


2009 ◽  
Vol 2 (2) ◽  
pp. 74-84
Author(s):  
V.M. Pestrenin ◽  
I.V. Pestrenina ◽  
N.F. Talantsev

Author(s):  
А.Н. Рогалев ◽  
С.В. Доронин ◽  
В.В. Москвичев

Под силовыми конструкциями понимают технические устройства, составленные из различных частей, воспринимающие комплекс эксплуатационных нагрузок в штатных и аварийных режимах нагружения. При решении прикладных задач исследования напряженно-деформированных состояний силовых конструкций важна оценка степени близости к точному приближенного решения, полученного на вполне определенной сетке конечных элементов с конечной величиной шага сетки. С учетом влияния ошибок округления сходимость метода конечных элементов контролировать сложно: при большом числе конечных элементов решение может расходиться из-за накапливающихся ошибок округления, даже если условия сходимости выполняются. Описанное в статье применение методов обратного анализа ошибок позволяет достаточно точно контролировать точность численных оценок деформированного состояния силовых конструкций, что подтверждают расчеты, выполненные для практических задач. The solution of applied problems of technogenic safety, survivability, risk and protection is performed for structures which are close to limiting states. These states are characterized by decreasing safety factors down to one. In this case a mistaken estimation for safety factor may cause the situation when the calculated safety factor will be greater than one but the real safety factor will be less than one. Safety factors estimation is performed on the basis of calculation for stress-strain state characteristics. Thus, the issues of accuracy and reliability of determining stresses and deformations are an integral part of the problem of man-made safety. In the numerical analysis of the stress-strain state, the stiffness matrix of the design model is formed, the dimension of which reaches up to tens of millions. A large number of computations for tasks of this dimension is presumably leading to significant rounding errors. Ensuring the grid convergence of results by decreasing the grid spacing is inconsistent with the growth of computational errors due to rounding. For finite element analysis of power structures of technical objects, methods of a posteriori reverse error analysis are proposed that control the effect of rounding errors on the result when solving a solving system of linear algebraic equations. The coefficient matrix of this system is the stiffness matrix of the finite element model. The basic idea is to obtain and solve a system of equations with a known exact solution. Comparison of the results of exact and numerical solutions allows us to estimate the magnitude of the error.


2017 ◽  
Vol 49 (5) ◽  
pp. 666-675 ◽  
Author(s):  
A. E. Burov ◽  
A. M. Lepihin ◽  
N. A. Makhutov ◽  
V. V. Moskvichev

Author(s):  
V. P. KUPRIY ◽  
O. L. TIUTKIN ◽  
P. YE. ZAKHARCHENKO

Purpose. The article examines the effect on the stress-strain state of the parameters of the finite-element model created in the “Lira” software package in a numerical analysis of non-circular outlined tunnels. Methodology To achieve this goal, the authors developed finite element models of the calotte part of the mine during the construction of a double track railway tunnel using “Lira” software. In each of the models in the “Lira” software package, the interaction zone with temporary fastening was sampled in a specific way. After creation of models, their numerical analysis with the detailed research of his results was conducted. Findings. In the finite element models, the values of deformations and stresses in the horizontal and vertical axes, as well as the maximum values of the moments and longitudinal forces in the temporary fastening were obtained. A comparative analysis of the obtained values of the components of the stress-strain state with a change in the parameters of the finite element model was carried out. The graphs of the laws of these results from the discretization features of the two models were plotted. The third finite element model with a radial meshing in the zone of interaction of temporary support with the surrounding soil massif was investigated. Originality It has been established that in the numerical analysis of the SSS of a tunnel lining of a non-circular outline, its results substantially depend on the shape, size and configuration of the applied finite elements, on the size of the computational area of the soil massif, and also on the conditions for taking into account the actual (elastic or plastic) behavior of the soil massif.  Practical value. The features of discretization and the required dimensions of the computational area of the soil massif were determined when modeling the “lining – soil massif” system, which provide sufficient accuracy for calculating the parameters of the stress-strain state of the lining.


2017 ◽  
Vol 11 (2) ◽  
pp. 231-239 ◽  
Author(s):  
Evgenij Kalentev ◽  
Štefan Václav ◽  
Pavol Božek ◽  
Alexander Korshunov ◽  
Valerij Tarasov

Sign in / Sign up

Export Citation Format

Share Document