steel tank
Recently Published Documents


TOTAL DOCUMENTS

186
(FIVE YEARS 49)

H-INDEX

8
(FIVE YEARS 2)

Author(s):  
Vivek Vishnu ◽  
◽  
Vineet Kumar Dwivedi ◽  

The thesis proposes a method for introducing lean manufacturing using string diagram in an operating CNG high pressure storage tank manufacturing job shop at Jayfe Cylinder Ltd. Haryana. By applying lean manufacturing using process layout diagram to produce part families with similar manufacturing processes and stable demand, plants expect to reduce costs and lead-times and improve quality and delivery performance. The thesis outlines a method for assessing, designing, and implementing lean manufacturing using process layout diagram, and illustrates this process with an example. A manufacturing cell that produces high pressure steel tank container for commercial & automobile customers is implemented at cylinder tank Machining Centers. The conclusion of the thesis highlights the key lessons learned from this process.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Hans Raj Vashishtha ◽  
Vishwas A. Sawant

AbstractThe granular pile anchor foundation is an effective and economical foundation system to counter the pullout forces exerted in case of transmission towers or foundations in expansive soil. The pullout tests were performed to study the behaviour of a single granular pile anchor in the clayey soil bed. Tests were conducted in a steel tank of 1 ×  1  ×  1 m size with the help of loading frame arrangement. The pullout load required for upward movement equal to 10% diameter was considered as the pullout capacity of the granular pile anchor. In the parametric study, length and diameter of the granular pile anchor were varied to examine their effect. Number of anchor plates was also varied in few tests. The pullout capacity enhanced with an increase in the diameter and length to diameter ratio. The effect of the length to diameter ratio was appreciable up to the value of 10. However, no significant effect was found in the cases of multiple anchor plates. A relationship is proposed to predict normalized pullout capacity.


2021 ◽  
Vol 1 (7) ◽  
pp. 69-79
Author(s):  
Aleksandr I. Barulin ◽  

Introduction. Vertical steel tanks are extensively used in oil fields to hold crude oil and other liquids. Their construction requires continuous surveying control. However, measurement procedures, data processing, and deviations and documentation correction are not universal and cannot be applied for tanks with a capacity of less than 3000 m3. Moreover, the process of correcting the detected bottom irregularities is poorly substantiated and intuitive. Research objective is to improve the as-built survey accuracy and reliability of the low-capacity steel tank bottom, substantiate the minimum height of its irregularities, increase the objectivity and productivity of measurement processing, develop an unambiguous method for time-predictable correction of bottom irregularities, and substantiate the optimal contents of its relief’s as-built scheme. Methods of research. Geometric leveling for the bottom profile survey failed to provide adequate accuracy and was therefore replaced by the method of trigonometric leveling. A method has been developed for determining the deviations of the existent tank bottom profile from the design position by means of algebraic actions with surfaces of a topographic order. The accuracy of determining the smallest height of bottom irregularities has been estimated under the tacheometric survey. A method has been proposed for controlling the correction of tank bottom irregularities based on evaluation calculations of bottom deformations by the finite element method. Research results. All the development results are exemplified by a specific production example. It was found that for a full completion of work, two iterations of tank bottom irregularities correction are enough. Methods of optimal design for the facility’s as-built schemes are presented. Conclusions. A simple, accurate, low-cost, productive, and time-predictable method of mine surveying, mathematical processing and correction of deviations in the tank bottom profile has been developed. This technique reduces the construction period and increases the operating time of the facility.


2021 ◽  
Vol 2096 (1) ◽  
pp. 012026
Author(s):  
E Sh Gaysin ◽  
A R Valeev ◽  
R R Tashbulatov

Abstract The paper proposes a new approach to assessing the residual resource of the wall of a vertical steel tank by the criterion of low-cycle loading, taking into account its actual deformations. The method is based on the principle of measuring the difference in the power of the luminous flux at the ends of the light tube (light guide) when it is bent. An experiment was carried out using an optical pair (LED and photodiode) and an optical fiber. For this purpose, templates with known radii of curvature were prepared, a prototype of an Arduino-based device was developed and an optical fiber was manufactured, which was subsequently fixed on the wall of a two-hundred-liter metal barrel. As a result of the experiments, a formula was obtained for determining the curvature of the wall depending on the readings of the sensor. The sensitivity of the proposed method is estimated. An algorithm for determining the number of cycles before the formation of fatigue cracks is proposed, taking into account the actual values of the wall deflection.


OENO One ◽  
2021 ◽  
Vol 55 (3) ◽  
pp. 53-65
Author(s):  
Rémy Junqua ◽  
Liming Zeng ◽  
Alexandre Pons

The oak barrel maturation step is nowadays strongly rooted in the production of quality wines. Two main physico‑chemical phenomena contribute to the modification and improvement of wine: the solubilisation of volatile and non-volatile wood compounds concomitant with the dissolution of oxygen from the air into the wine. Indeed, wood is a porous material and gas transfer (especially oxygen transfer, expressed as oxygen transfer rate or OTR) through oak barrels, is an intrinsic parameter which ensures wine oxygen supply during maturation. Due to its oenological impact, it has been actively studied over recent decades using several approaches based on the same principle: the monitoring of oxygen in a model wine solution in the barrel. This project aimed at assaying barrel OTR by using a new tool based on the theoretical knowledge of gas transfer through porous materials. An oxygen concentration gradient was created on each side of a barrel kept in an airtight stainless-steel tank. The concentration of the oxygen in the atmosphere around the barrel was monitored in order to quantify oxygen transfer, thus the avoiding common drawbacks of interactions between dissolved oxygen ingress kinetics and the consumption of oxygen in the liquid phase by wood components. This study reports for the first time, the diffusion coefficient of entire oak barrels (Q. sessilis) to be between 10-10 and 10-9 m²/s, and it contributes to increasing knowledge on the complex phenomena driving oxygen ingress during the maturation of wine in barrels kept in cellar conditions. The results highlight the important role of wood moisture content in oxygen transfer, and provides a simple and reliable parameter to monitor it: the weight of the barrel. Following methodology developed by the authors, the OTR of a new oak barrel was found to be 11.4 mg/L per year. Taking into account the oxygen released through the wood pores, a new barrel will contribute 14.4 mg/L per year of oxygen to the wine, of which 46 % in the first three months of aging.


Author(s):  
A. E. Lebedev ◽  
A. B. Kapranova ◽  
I. S. Gudanov ◽  
D. S. Dolgin ◽  
A. A. Vatagin

Author(s):  
María Reyes González-Centeno ◽  
Pierre-Louis Teissedre ◽  
Kleopatra Chira

The phenolic, aromatic and sensory evolution of a red wine under different oak aging conditions was evaluated. Neither phenolic nor fruity aromatic contents and profiles were impacted by the aging container or the derived oak products used. Meanwhile, a different woody aroma content was observed depending on the exposed wood area to wine volume ratio. From a sensory point of view, higher smoky, vanilla and/or spicy flavours were identified for all oak-aged wines when compared to the control (stainless steel tank), but they were all perceived as being as fruity as the control.


Analytica ◽  
2021 ◽  
Vol 2 (2) ◽  
pp. 38-49
Author(s):  
Ettore Guerriero ◽  
Massimo Iorizzo ◽  
Marina Cerasa ◽  
Ivan Notardonato ◽  
Bruno Testa ◽  
...  

The paper would like to show a direct injection into GC-MS/QqQ for the determination of secondary aromas in white wine samples fermented in two different ways. The procedure has been compared with more traditional methods used in this field, i.e., headspace analysis and liquid–liquid extraction. The application of such direct injection, for the first time in the literature, allows us to analyze Volatile Organic Compounds (VOCs) in the range 0.1–100 µg mL−1, with Limits of Detection (LODs) and Limits of Quantification (LOQs) between 0.01–0.05 µg mL−1 and 0.03–0.09 µg mL−1, respectively, intraday and interday below 5.6% and 8.5%, respectively, and recoveries above 92% at two different fortification levels. The procedure has been applied to real wine samples: it evidences how the fermentation in wood (cherry) barrel yields higher VOC levels than ones in wine fermented in steel tank, causing production of different secondary aromas and different relative flavors.


Sign in / Sign up

Export Citation Format

Share Document