Estimation of the accuracy of numerical analysis for the deformed state of power structures of technical objects

Author(s):  
А.Н. Рогалев ◽  
С.В. Доронин ◽  
В.В. Москвичев

Под силовыми конструкциями понимают технические устройства, составленные из различных частей, воспринимающие комплекс эксплуатационных нагрузок в штатных и аварийных режимах нагружения. При решении прикладных задач исследования напряженно-деформированных состояний силовых конструкций важна оценка степени близости к точному приближенного решения, полученного на вполне определенной сетке конечных элементов с конечной величиной шага сетки. С учетом влияния ошибок округления сходимость метода конечных элементов контролировать сложно: при большом числе конечных элементов решение может расходиться из-за накапливающихся ошибок округления, даже если условия сходимости выполняются. Описанное в статье применение методов обратного анализа ошибок позволяет достаточно точно контролировать точность численных оценок деформированного состояния силовых конструкций, что подтверждают расчеты, выполненные для практических задач. The solution of applied problems of technogenic safety, survivability, risk and protection is performed for structures which are close to limiting states. These states are characterized by decreasing safety factors down to one. In this case a mistaken estimation for safety factor may cause the situation when the calculated safety factor will be greater than one but the real safety factor will be less than one. Safety factors estimation is performed on the basis of calculation for stress-strain state characteristics. Thus, the issues of accuracy and reliability of determining stresses and deformations are an integral part of the problem of man-made safety. In the numerical analysis of the stress-strain state, the stiffness matrix of the design model is formed, the dimension of which reaches up to tens of millions. A large number of computations for tasks of this dimension is presumably leading to significant rounding errors. Ensuring the grid convergence of results by decreasing the grid spacing is inconsistent with the growth of computational errors due to rounding. For finite element analysis of power structures of technical objects, methods of a posteriori reverse error analysis are proposed that control the effect of rounding errors on the result when solving a solving system of linear algebraic equations. The coefficient matrix of this system is the stiffness matrix of the finite element model. The basic idea is to obtain and solve a system of equations with a known exact solution. Comparison of the results of exact and numerical solutions allows us to estimate the magnitude of the error.

Author(s):  
D. O. BANNIKOV ◽  
V. P. KUPRII ◽  
D. YU. VOTCHENKO

Purpose. Perform numerical analysis of the station structure. Take into account in the process of mathematical modeling the process of construction of station tunnels of a three-vaulted station. Obtain the regularities of the stress-strain state of the linings, which is influenced by the processes of soil excavation and lining construction. Methodology. To achieve this goal, a series of numerical calculations of models of the deep contour interval metro pylon station was performed. Three finite-element models have been developed, which reflect the stages of construction of a three-vaulted pylon station. Numerical analysis was performed on the basis of the finite element method, implemented in the calculation complex Lira for Windows. Modeling of the stress-strain state of the station tunnel linings and the soil massif was performed using rectangular, universal quadrangular and triangular finite elements, which take into account the special properties of the soil massif. Station tunnel linings are modeled by means of rod finite elements. Findings. Isofields of the stress-strain state in finite-element models reflecting the stages of construction are obtained. The vertical displacements and horizontal stresses that are characteristic of a three-vaulted pylon station are analyzed. The analysis of horizontal stresses proved that at the stage of opening of the middle tunnel the scheme of pylon operation is rather disadvantageous. The analysis of bending moments and normal forces was also carried out and the asymmetry of their distribution was noted. Originality. Based on the obtained patterns of distribution of stress-strain state and force factors, it is proved that numerical analysis of the station structure during construction is necessary to take measures to prevent or reduce deformation of frames that are in unfavorable conditions. Practical value. In the course of research, the regularities of changes in stresses, displacements, bending moments and normal forces in the models of the pylon station, which reflect the sequence of its construction, were obtained.


Author(s):  
V. P. KUPRIY ◽  
O. L. TIUTKIN ◽  
P. YE. ZAKHARCHENKO

Purpose. The article examines the effect on the stress-strain state of the parameters of the finite-element model created in the “Lira” software package in a numerical analysis of non-circular outlined tunnels. Methodology To achieve this goal, the authors developed finite element models of the calotte part of the mine during the construction of a double track railway tunnel using “Lira” software. In each of the models in the “Lira” software package, the interaction zone with temporary fastening was sampled in a specific way. After creation of models, their numerical analysis with the detailed research of his results was conducted. Findings. In the finite element models, the values of deformations and stresses in the horizontal and vertical axes, as well as the maximum values of the moments and longitudinal forces in the temporary fastening were obtained. A comparative analysis of the obtained values of the components of the stress-strain state with a change in the parameters of the finite element model was carried out. The graphs of the laws of these results from the discretization features of the two models were plotted. The third finite element model with a radial meshing in the zone of interaction of temporary support with the surrounding soil massif was investigated. Originality It has been established that in the numerical analysis of the SSS of a tunnel lining of a non-circular outline, its results substantially depend on the shape, size and configuration of the applied finite elements, on the size of the computational area of the soil massif, and also on the conditions for taking into account the actual (elastic or plastic) behavior of the soil massif.  Practical value. The features of discretization and the required dimensions of the computational area of the soil massif were determined when modeling the “lining – soil massif” system, which provide sufficient accuracy for calculating the parameters of the stress-strain state of the lining.


Author(s):  
S. N. Popov ◽  

The results of laboratory studies of the elastic-strength properties of cement stone samples depending on the hardening time and the effect of an acid reagent, and approximated dependences of the change in the elastic modulus, Poisson's ratio and strength properties, depending on the time characteristics for two types of plugging materials are presented. A finite element scheme of the nearwellbore zone has been developed, taking into account the cement stone and the production casing. The results of numerical modeling of the stress-strain state of columns with a diameter of 146 and 178 mm, cement stone and reservoir rocks near the well based on an elastic model are presented. The analysis of the stress field for the occurrence of zones of destruction in the cement stone using the Coulomb-Mohr criterion is carried out. It is shown that, depending on the time of hardening and the effect of an acidic reagent, cement does not collapse and retains a sufficient safety factor. Keywords: cement stone; plugging material; elastic-strength properties; near-wellbore zone; numerical model; finite element method; stress-strain state; safety factor.


Author(s):  
А. Г. Гребеников ◽  
И. В. Малков ◽  
В. А. Урбанович ◽  
Н. И. Москаленко ◽  
Д. С. Колодийчик

The analysis of the design and technological features of the tail boom (ТB) of a helicopter made of polymer composite materials (PCM) is carried out.Three structural and technological concepts are distinguished - semi-monocoque (reinforced metal structure), monocoque (three-layer structure) and mesh-type structure. The high weight and economic efficiency of mesh structures is shown, which allows them to be used in aerospace engineering. The physicomechanical characteristics of the network structures are estimated and their uniqueness is shown. The use of mesh structures can reduce the weight of the product by a factor of two or more.The stress-strain state (SSS) of the proposed tail boom design is determined. The analysis of methods for calculating the characteristics of the total SSS of conical mesh shells is carried out. The design of the tail boom is presented, the design diagram of the tail boom of the transport category rotorcraft is developed. A finite element model was created using the Siemens NX 7.5 system. The calculation of the stress-strain state (SSS) of the HC of the helicopter was carried out on the basis of the developed structural scheme using the Advanced Simulation module of the Siemens NX 7.5 system. The main zones of probable fatigue failure of tail booms are determined. Finite Element Analysis (FEA) provides a theoretical basis for design decisions.Shown is the effect of the type of technological process selected for the production of the tail boom on the strength of the HB structure. The stability of the characteristics of the PCM tail boom largely depends on the extent to which its design is suitable for the use of mechanized and automated production processes.A method for the manufacture of a helicopter tail boom from PCM by the automated winding method is proposed. A variant of computer modeling of the tail boom of a mesh structure made of PCM is shown.The automated winding technology can be recommended for implementation in the design of the composite tail boom of the Mi-2 and Mi-8 helicopters.


Author(s):  
V. I. Tarichko ◽  
P. I. Shalupina

The paper focuses on a method for assessing the dynamic loading of the frame of a special wheeled chassis when it moves on roads of various categories. Based on the developed finite element model of the frame, we obtained and analyzed full-size patterns of the stress-strain state of the frame and oscillograms of equivalent stresses in the most loaded zones of the frame.


2020 ◽  
pp. 117-123
Author(s):  
Sergii Trubachev ◽  
Olga Alexeychuk

The bracket is used to attach the gondola, which is an important part of the aircraft power plant. The gondola is constantly subjected to heavy loads when starting the engine, in flight, takeoff and landing. Therefore, the strength of the brackets of its attachment is very important. The geometric 3D model was built in SOLIDWORKS and imported for further calculations in ANSYS. A grid of tetraidal elements was created by the program. Thanks to the obtained FE (finite element) grid, we make the calculation of the stress strain state. Comments are provided on changes in the geometric and mass parameters of the bracket, based on the results of calculations.


Vestnik MGSU ◽  
2020 ◽  
pp. 452-461
Author(s):  
Emil Imran Оglu Alirzaev ◽  
Marina E. Dement'eva

Introduction. One of the serious problems in the construction of underground structures in a dense urban area is the occurrence of excess deformations of the foundations of operating buildings that fall into the zone of influence of underground construction. The subject of the study was the calculated justification of the modern technology of compensatory injection. The relevance of the task is determined by the fact that the choice of the most effective protection technology should be based not only on a comparison of technological precipitation with maximum permissible values, but also on the assessment of the possibility of monitoring and controlling the movements of the foundations of buildings and structures during construction and subsequent operation. The purpose of the study was to compare various methods of protecting the foundations of existing buildings and structures and justify the selection of the most effective of them for further implementation and dissemination in the design and construction of urban underground structures. Materials and methods. On the basis of the survey data of the operated building falling into the impact zone of excavation of the pit for the construction of the installation and shield chamber of the subway, the parameters of the stress-strain state of its foundations are studied by mathematical modeling. The problem was solved by the finite element method based on the software and computer complex Z_Soil v.18.24. Results. Based on the analysis of the results of the examination of the administrative building using the finite element method, a change in the parameters of the stress-strain state of the foundations was modeled with various technologies for strengthening it. In the course of solving the geotechnical problem, it was found that the minimum impact on the foundations of the building during the construction of the pit was obtained in the method of compensatory injection. The system of criteria for making a decision on choosing an effective way to ensure the suitability of buildings in the underground construction zone for operation is substantiated. Conclusions. The results of this work can be used to justify the choice of technology for prevention and control of excess deformations of foundations. The function for calculating the volume of injected material in the Z_Soil software and computer complex can be used to justify the consumption of materials and the economic efficiency of the technological solution.


Author(s):  
V. F. Danenko ◽  
◽  
L. M. Volgograd State Technical University

A computer finite-element simulation of the stress-strain state of elements of a closed rope under conditions of joint tension and torsion has been carried out. The redistribution of axial forces and torques in the cross sections of layers during rotation of the rope under the influence of external torque was determined, which leads to a decrease in the safety margin of the rope, a violation of the compatibility of axial and radial movements in the layers and the structural integrity of the rope in the form of wire breakage of the outer layer.


Sign in / Sign up

Export Citation Format

Share Document