Doing without Phosgene, Hydrogen Cyanide, and Formaldehyde

2022 ◽  
pp. 27-54
Author(s):  
John Andraos ◽  
Albert S. Matlack
Keyword(s):  
1997 ◽  
Vol 161 ◽  
pp. 179-187
Author(s):  
Clifford N. Matthews ◽  
Rose A. Pesce-Rodriguez ◽  
Shirley A. Liebman

AbstractHydrogen cyanide polymers – heterogeneous solids ranging in color from yellow to orange to brown to black – may be among the organic macromolecules most readily formed within the Solar System. The non-volatile black crust of comet Halley, for example, as well as the extensive orangebrown streaks in the atmosphere of Jupiter, might consist largely of such polymers synthesized from HCN formed by photolysis of methane and ammonia, the color observed depending on the concentration of HCN involved. Laboratory studies of these ubiquitous compounds point to the presence of polyamidine structures synthesized directly from hydrogen cyanide. These would be converted by water to polypeptides which can be further hydrolyzed to α-amino acids. Black polymers and multimers with conjugated ladder structures derived from HCN could also be formed and might well be the source of the many nitrogen heterocycles, adenine included, observed after pyrolysis. The dark brown color arising from the impacts of comet P/Shoemaker-Levy 9 on Jupiter might therefore be mainly caused by the presence of HCN polymers, whether originally present, deposited by the impactor or synthesized directly from HCN. Spectroscopic detection of these predicted macromolecules and their hydrolytic and pyrolytic by-products would strengthen significantly the hypothesis that cyanide polymerization is a preferred pathway for prebiotic and extraterrestrial chemistry.


1996 ◽  
Vol 88 (3) ◽  
pp. 673-682 ◽  
Author(s):  
K. HINDS ◽  
A.C. LEGON ◽  
J.H. HOLLOWAY

2002 ◽  
Vol 107 (E11) ◽  
pp. 6-1-6-10 ◽  
Author(s):  
Karen Magee-Sauer ◽  
Michael J. Mumma ◽  
Michael A. DiSanti ◽  
Neil Dello Russo
Keyword(s):  

Symmetry ◽  
2021 ◽  
Vol 13 (2) ◽  
pp. 288
Author(s):  
Alexei Kushner ◽  
Valentin Lychagin

The first analysis of media with internal structure were done by the Cosserat brothers. Birkhoff noted that the classical Navier–Stokes equation does not fully describe the motion of water. In this article, we propose an approach to the dynamics of media formed by chiral, planar and rigid molecules and propose some kind of Navier–Stokes equations for their description. Examples of such media are water, ozone, carbon dioxide and hydrogen cyanide.


1990 ◽  
Vol 41 (6) ◽  
pp. 1093 ◽  
Author(s):  
JL Wheeler ◽  
C Mulcahy ◽  
JJ Walcott ◽  
GG Rapp

The effect of seven factors, namely genotype, plant maturity, nitrogen fertilizer, phosphorus fertilizer, water stress, light intensity and temperature, on the hydrogen cyanide potential (HCNp) of forage sorghum was studied in three pot experiments. Fivefold differences occurred between genotypes in HCNp, with a breeder's line, X45106, selected for low HCNp having a maximum of 520 mg HCN kg-1 DM (dry matter) compared with 2300 and 2450 mg kg-1 DM for cvs Zulu and Silk respectively. In X45 106, HCNp (mg HCN kg-1 DM) declined curvilinearly with age d (days from sowing) (HCNp=8460- 320d+ 3.1d2) and linearly in Silk (HCNp = 9020 - 110d), but the decline in Zulu was not statistically significant. Nitrogen (equivalent to 200 kg ha-1 of N) increased HCN, (P< 0.001), but more so in full light (100 mg kg-1 compared with 1430 mg kg-1) than in 50% shade (190 mg kg-1 compared with 690 mg kg-1). In one experiment, acute water stress appeared to reduce HCNp, but this was confounded with the strong decline due to aging. In another study, acute water stress had no effect on HCNp. Neither the application of superphosphate nor change in light intensity, nor change in temperature had a direct significant effect on HCNp in these studies. Breeding and selection for low HCNp appears a promising approach to ensuring that sorghum plants will provide non-toxic forage from an early stage of growth.


Sign in / Sign up

Export Citation Format

Share Document