Practical Methods for the Uniform Asymptotic Evaluation of Oscillating Integrals with Several Coalescing Saddle Points

2020 ◽  
pp. 137-173
Author(s):  
J. N. L. Connor
2013 ◽  
Vol 11 (05) ◽  
pp. 1350045 ◽  
Author(s):  
V. S. SHCHESNOVICH

An asymptotic analytical approach is proposed for bosonic probability amplitudes in unitary linear networks, such as the optical multiport devices for photons. The asymptotic approach applies for large number of bosons N ≫ M in the M-mode network, where M is finite. The probability amplitudes of N bosons unitarily transformed from the input modes to the output modes of a unitary network are approximated by a multidimensional integral with the integrand containing a large parameter (N) in the exponent. The integral representation allows an asymptotic estimate of bosonic probability amplitudes up to a multiplicative error of order 1/N by the saddle point method. The estimate depends on solution of the scaling problem for the M × M-dimensional unitary network matrix: to find the left and right diagonal matrices which scale the unitary matrix to a matrix which has specified row and column sums (equal, respectively, to the distributions of bosons in the input and output modes). The scaled matrices give the saddle points of the integral. For simple saddle points, an explicit formula giving the asymptotic estimate of bosonic probability amplitudes is derived. Performance of the approximation and the scaling of the relative error with N are studied for two-mode network (the beam splitter), where the saddle-points are roots of a quadratic and an exact analytical formula for the probability amplitudes is available, and for three-mode network (the tritter).


Open Physics ◽  
2009 ◽  
Vol 7 (4) ◽  
Author(s):  
Zahid Qazi ◽  
Azhar Rizvi

AbstractInterfacial wave propagation parallel to a dielectric interface has been studied by considering an electric current line source present at the interface. The first order asymptotic evaluation of field components shows a null of the electric field at the interface. An amplitude null represents an unstable structure in the phase map and a phase front discontinuity across the interface. Higher order asymptotic evaluation has been employed to gain further insight into this propagation problem. The results show that the wavefronts need not be discontinuous. The continuity of the phase fronts is preserved with the help of interesting and stable structures such as saddle points and center points in the phase map of the electric field in both half spaces.


2007 ◽  
Vol 72 (8) ◽  
pp. 1122-1138 ◽  
Author(s):  
Milan Uhlár ◽  
Ivan Černušák

The complex NO+·H2S, which is assumed to be an intermediate in acid rain formation, exhibits thermodynamic stability of ∆Hº300 = -76 kJ mol-1, or ∆Gº300 = -47 kJ mol-1. Its further transformation via H-transfer is associated with rather high barriers. One of the conceivable routes to lower the energy of the transition state is the action of additional solvent molecule(s) that can mediate proton transfer. We have studied several NO+·H2S structures with one or two additional water molecule(s) and have found stable structures (local minima), intermediates and saddle points for the three-body NO+·H2S·H2O and four-body NO+·H2S·(H2O)2 clusters. The hydrogen bonds network in the four-body cluster plays a crucial role in its conversion to thionitrous acid.


2021 ◽  
Vol 2021 (7) ◽  
Author(s):  
Andrés Anabalón ◽  
Simon F. Ross

Abstract We study Lorentzian supersymmetric configurations in D = 4 and D = 5 gauged $$ \mathcal{N} $$ N = 2 supergravity. We show that there are smooth 1/2 BPS solutions which are asymptotically AdS4 and AdS5 with a planar boundary, a compact spacelike direction and with a Wilson line on that circle. There are solitons where the S1 shrinks smoothly to zero in the interior, with a magnetic flux through the circle determined by the Wilson line, which are AdS analogues of the Melvin fluxtube. There is also a solution with a constant gauge field, which is pure AdS. Both solutions preserve half of the supersymmetries at a special value of the Wilson line. There is a phase transition between these two saddle-points as a function of the Wilson line precisely at the supersymmetric point. Thus, the supersymmetric solutions are degenerate, at least at the supergravity level. We extend this discussion to one of the Romans solutions in four dimensions when the Euclidean boundary is S1× Σg where Σg is a Riemann surface with genus g > 0. We speculate that the supersymmetric state of the CFT on the boundary is dual to a superposition of the two degenerate geometries.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Kyungchan Lee ◽  
Gunnar F. Lange ◽  
Lin-Lin Wang ◽  
Brinda Kuthanazhi ◽  
Thaís V. Trevisan ◽  
...  

AbstractTime reversal symmetric (TRS) invariant topological insulators (TIs) fullfil a paradigmatic role in the field of topological materials, standing at the origin of its development. Apart from TRS protected strong TIs, it was realized early on that more confounding weak topological insulators (WTI) exist. WTIs depend on translational symmetry and exhibit topological surface states only in certain directions making it significantly more difficult to match the experimental success of strong TIs. We here report on the discovery of a WTI state in RhBi2 that belongs to the optimal space group P$$\bar{1}$$ 1 ¯ , which is the only space group where symmetry indicated eigenvalues enumerate all possible invariants due to absence of additional constraining crystalline symmetries. Our ARPES, DFT calculations, and effective model reveal topological surface states with saddle points that are located in the vicinity of a Dirac point resulting in a van Hove singularity (VHS) along the (100) direction close to the Fermi energy (EF). Due to the combination of exotic features, this material offers great potential as a material platform for novel quantum effects.


Sign in / Sign up

Export Citation Format

Share Document