OA Equipment Manufacturer RICOH (Japan) Action toward plastic recycle

Author(s):  
M. Tokuse
2012 ◽  
Vol 40 (1) ◽  
pp. 25-41 ◽  
Author(s):  
H. M. R. Aboutorabi ◽  
L. Kung

Abstract REFERENCE: H. M. R. Aboutorabi and L. Kung, “Application of Coupled Structural Acoustic Analysis and Sensitivity Calculations to a Tire Noise Problem,” Tire Science and Technology, TSTCA, Vol. 40, No. 1, January – March 2012, pp. 25–41. ABSTRACT: Tire qualification for an original equipment (OE) program consists of several rounds of submissions by the tire manufacturer for evaluation by the vehicle manufacturer. Tires are evaluated both subjectively, where the tire performance is rated by an expert driver, and objectively, where sensors and testing instruments are used to measure the tire performance. At the end of each round of testing the evaluation results are shared and requirements for performance improvement for the next round are communicated with the tire manufacturer. As building and testing is both expensive and time consuming predictive modeling and simulation analysis that can be applied to the performance of the tire is of great interest and value. This paper presents an application of finite element analysis (FEA) modeling along with experimental verification to solve tire noise objections at certain frequencies raised by an original equipment manufacturer (OEM) account. Coupled structural-acoustic analysis method was used to find modal characteristics of the tire at the objectionable frequencies. Sensitivity calculations were then carried out to evaluate the strength of contribution from each tire component to the identified modes. Based on these findings changes to the construction were proposed and implemented that addressed the noise issue.


2009 ◽  
Vol 8 (1) ◽  
pp. 24 ◽  
Author(s):  
I. C. Acunha Jr ◽  
P. S. Schneider

Evaporative condensers present a hard problem for numerical modeling because of the complex phenomena of heat and mass transfer outside of the bundle tubes in turbulent flows. The goal of this work is to study the air and water behavior inside an evaporative condenser operating with ammonia as the refrigerant fluid. A commercial CFD software package (FLUENT) is employed to predict the two-phase flow of air and water droplets in this equipment. The air flow is modeled as a continuous phase using the Eulerian approach while the droplets water flow is modeled as a disperse phase with Lagrangian approach. The coupling between pressure and velocity fields is performed by the SIMPLE algorithm. The pressure, velocity and temperature fields are used to perform qualitative analyses to identify functional aspects of the condenser, while the temperature and the relative humidity evolution contributed to verify the agreement between the results obtained with the numerical model and those presented by equipment manufacturer.


Author(s):  
Tunde Victor Adediran ◽  
Ammar Al-Bazi

The study of complex manufacturing flow-shops has seen a number of approaches and frameworks proposed to tackle various production-associated problems. However, unpredictable disruptions, such as change in sequence of order, order cancellation and change in production delivery due time, imposed by customers on flow-shops that impact production processes and inventory control call for a more adaptive approach capable of responding to these changes. In this research work, a new adaptive framework and agent-based heuristic optimization system was developed to investigate the disruption consequences and recovery strategy. A case study using an Original Equipment Manufacturer (OEM) production process of automotive parts and components was adopted to justify the proposed system. The results of the experiment revealed significant improvement in terms of total number of late orders, order delivery time, number of setups and resources utilization, which provide useful information for manufacturer’s decision-making policies.  


Author(s):  
Juan C. Ramirez ◽  
Kamal Aljazireh ◽  
James F. Lane

Abstract Finely divided solid materials (e.g., dusts and fines), when dispersed in the air, can fuel particularly violent and destructive explosions. In this paper we will discuss a case study involving a dust explosion in a grain elevator and how a careful bearing greasing policy could have avoided it. We present the most common conditions that lead to bearing overheating which can serve as the ignition source for a dust explosion. Additionally, we stress the need to raise awareness among operators about the wide variety of greases available, and given this wide variety, it is critical for facilities to ensure they use a grease with characteristics as close as possible as these recommended by the equipment manufacturer.


2016 ◽  
Vol 3 (4) ◽  
pp. 234
Author(s):  
John S. Slattery ◽  
John F. O' ◽  
N.A. Connell ◽  
Dawna Rhoades ◽  
Siobhan Tiernan ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document