Completing Biot theory

2020 ◽  
pp. 819-825 ◽  
Author(s):  
T.J.T. Spanos ◽  
N. Udey ◽  
M.B. Dusseault
Keyword(s):  
2002 ◽  
Vol 27 (3) ◽  
pp. 413-428 ◽  
Author(s):  
K.L. Williams ◽  
D.R. Jackson ◽  
E.I. Thorsos ◽  
Dajun Tang ◽  
S.G. Schock

2012 ◽  
Vol 472-475 ◽  
pp. 178-182
Author(s):  
Zhi Ming Li ◽  
Xue Yan Hu ◽  
Ling Xia Zhen

Based on the Biot theory and laboratory data, engineers of LandOcean recently develop a certain technology for hydrocarbon detection in multi-phase medium in order to reduce ambiguity and uncertainty. The sensitivity of the technology is superior to others especially in carbonate pores and cave detection, igneous hydrocarbon prediction and fluid detection of non-well areas. A number of projects and wells drilling proved that this technology is effective and reliable.


Author(s):  
Nguyen Thi Kieu ◽  
Pham Chi Vinh ◽  
Do Xuan Tung

In this paper, we carry out the homogenization of a very rough three-dimensional interface separating  two dissimilar generally anisotropic poroelastic solids modeled by the Biot theory. The very rough interface is assumed to be a cylindrical surface that rapidly oscillates between two parallel planes, and the motion is time-harmonic. Using the homogenization method with the matrix formulation of the poroelasicity theory, the explicit  homogenized equations have been derived. Since the obtained  homogenized equations are totally explicit, they are very convenient for solving various practical problems. As an example proving this, the reflection and transmission of SH waves at a very rough interface of tooth-comb type is considered. The closed-form analytical expressions of the reflection and transmission coefficients have been  derived. Based on them, the effect of the incident angle and some material parameters  on the reflection and transmission coefficients are examined numerically.


Geophysics ◽  
2020 ◽  
Vol 85 (1) ◽  
pp. D1-D11
Author(s):  
Elliot J. H. Dahl ◽  
Kyle T. Spikes

Wave-induced fluid flow (WIFF) can significantly alter the effective formation velocities and cause increasing waveform dispersion and attenuation. We have used modified frame moduli from the theory of Chapman together with the classic Biot theory to improve the understanding of local- and global-flow effects on dipole flexural wave modes in boreholes. We investigate slow and fast formations with and without compliant pores, which induce local flow. The discrete wavenumber summation method generates the waveforms, which are then processed with the weighted spectral semblance method to compare with the solution of the period equation. We find compliant pores to decrease the resulting effective formation P- and S-wave velocities, that in turn decrease the low-frequency velocity limit of the flexural wave. Furthermore, depending on the frequency at which the local-flow dispersion occurs, different S-wave velocity predictions from the flexural wave become possible. This issue is investigated through changing the local-flow critical frequency. Sensitivity analyses of the flexural-wave phase velocity to small changes in WIFF parameters indicate the modeling to be mostly sensitive to compliant pores in slow and fast formations.


2007 ◽  
Vol 122 (4) ◽  
pp. 2038-2048 ◽  
Author(s):  
Olivier Doutres ◽  
Nicolas Dauchez ◽  
Jean-Michel Génevaux ◽  
Olivier Dazel
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document