Base sequence complexity of Clypeaster and Echinocardium DNA

Echinodermata ◽  
2020 ◽  
pp. 396-396
Author(s):  
T. Yanagisawa

Professor Darlington opened the meeting by challenging us with the view that chromosomes made the laws of heredity, rather than heredity fashioning the organization of chromosomes. To keep this wheel of logic spinning, it may be said that chromosomes also made the process of meiosis and thus determined the laws of meiotic exchange. I choose this gambit because our discussions lent considerable emphasis to the view that chromosome complexity compels its own sets of distinctive, and perhaps varied, mechanisms to effect the ultimate event of molecular recombination. The complexity that leads molecular recombination to operate in elaborate meiotic moulds is not, it should be emphasized, base sequence complexity. On the contrary, sequence repeats and genetic homoeologies, though adding disproportionately little to the base sequence complexity of a genome, adds considerably to the complexity of effecting chromosome alignment and crossing over. How chromosomes of diverse genetic content manage that complexity and in the process mould the characteristics of meiotic behaviour has been the primary target of our deliberations. That no single pattern of meiotic conduct was perceived in consequence of the discussions, is to be expected. To the extent that genomes differ in various aspects of chromosome organization - and that they do is patent - the particulars of meiotic organization might also differ. Although a strong sentiment was occasionally expressed for a single universal process of meiosis, it is my opinion that sameness and universality may be mistakenly treated as synonyms. Universals provide for diversity; they do not impose sameness. The task of identifying universal threads among different meiotic fabrics is not a straightforward one. The ultimate act of genetic recombination offers no detailed guide to the routes by which it may be achieved. Indeed, it is the structure of the chromosome that dictates the route ; recombination only signals the direction.


Cell ◽  
1975 ◽  
Vol 4 (2) ◽  
pp. 121-129 ◽  
Author(s):  
M.J. Getz ◽  
G.D. Birnie ◽  
B.D. Young ◽  
Elizabeth MacPhail ◽  
J. Paul

1991 ◽  
Vol 19 (24) ◽  
pp. 7003-7003 ◽  
Author(s):  
Y. Pommier ◽  
G. Capranico ◽  
A. Orr ◽  
K.W. Kohn

Genetics ◽  
1990 ◽  
Vol 124 (2) ◽  
pp. 423-428 ◽  
Author(s):  
C M Fauron ◽  
M Havlik ◽  
R I Brettell

Abstract The mitochondrial genome (mtDNA) organization from a fertile revertant line (V3) derived from the maize cytoplasmic male sterile type T (cmsT) callus tissue culture has been determined. We report that the sequence complexity can be mapped on to a circular "master chromosome" of 705 kb which includes a duplication of 165 kb of DNA when compared to its male sterile progenitor. Associated with this event is also a 0.423-kb deletion, which removed the cmsT-associated urf13 gene. As found for the maize normal type (N) and cmsT mitochondrial genomes, the V3 master chromosome also exists as a multipartite structure generated by recombination through repeated sequences.


Sign in / Sign up

Export Citation Format

Share Document