The mitochondrial genome organization of a maize fertile cmsT revertant line is generated through recombination between two sets of repeats.

Genetics ◽  
1990 ◽  
Vol 124 (2) ◽  
pp. 423-428 ◽  
Author(s):  
C M Fauron ◽  
M Havlik ◽  
R I Brettell

Abstract The mitochondrial genome (mtDNA) organization from a fertile revertant line (V3) derived from the maize cytoplasmic male sterile type T (cmsT) callus tissue culture has been determined. We report that the sequence complexity can be mapped on to a circular "master chromosome" of 705 kb which includes a duplication of 165 kb of DNA when compared to its male sterile progenitor. Associated with this event is also a 0.423-kb deletion, which removed the cmsT-associated urf13 gene. As found for the maize normal type (N) and cmsT mitochondrial genomes, the V3 master chromosome also exists as a multipartite structure generated by recombination through repeated sequences.

Genetics ◽  
1993 ◽  
Vol 135 (3) ◽  
pp. 869-879 ◽  
Author(s):  
H Janska ◽  
S A Mackenzie

Abstract Spontaneous reversion to pollen fertility and fertility restoration by the nuclear gene Fr in cytoplasmic male sterile common bean (Phaseolus vulgaris L.) are associated with the loss of a large portion of the mitochondrial genome. To understand better the molecular events responsible for this DNA loss, we have constructed a physical map of the mitochondrial genome of a stable fertile revertant line, WPR-3, and the cytoplasmic male sterile line (CMS-Sprite) from which it was derived. This involved a cosmid clone walking strategy with comparative DNA gel blot hybridizations. Mapping data suggested that the simplest model for the structure of the CMS-Sprite genome consists of three autonomous chromosomes differing only in short, unique regions. The unique region contained on one of these chromosomes is the male sterility-associated 3-kb sequence designated pvs. Based on genomic environments surrounding repeated sequences, we predict that chromosomes can undergo intra- and intermolecular recombination. The mitochondrial genome of the revertant line appeared to contain only two of the three chromosomes; the region containing the pvs sequence was absent. Therefore, the process of spontaneous cytoplasmic reversion to fertility likely involves the disappearance of an entire mitochondrial chromosome. This model is supported by the fact that we detected no evidence of recombination, excision or deletion events within the revertant genome that could account for the loss of a large segment of mitochondrial DNA.


1987 ◽  
Vol 11 (5) ◽  
pp. 339-346 ◽  
Author(s):  
Christiane M. -R. Fauron ◽  
Albert G. Abbott ◽  
Richard I. S. Brettell ◽  
Raymond F. Gesteland

2000 ◽  
Vol 23 (4) ◽  
pp. 745-752 ◽  
Author(s):  
Sérgio Luiz Pereira

With the advent of DNA sequencing techniques the organization of the vertebrate mitochondrial genome shows variation between higher taxonomic levels. The most conserved gene order is found in placental mammals, turtles, fishes, some lizards and Xenopus. Birds, other species of lizards, crocodilians, marsupial mammals, snakes, tuatara, lamprey, and some other amphibians and one species of fish have gene orders that are less conserved. The most probable mechanism for new gene rearrangements seems to be tandem duplication and multiple deletion events, always associated with tRNA sequences. Some new rearrangements seem to be typical of monophyletic groups and the use of data from these groups may be useful for answering phylogenetic questions involving vertebrate higher taxonomic levels. Other features such as the secondary structure of tRNA, and the start and stop codons of protein-coding genes may also be useful in comparisons of vertebrate mitochondrial genomes.


2021 ◽  
Author(s):  
Maria Paula Montaña Lozano ◽  
Manuela Alejandra MorenoCarmona ◽  
Jesus Mauricio Ochoa Capera ◽  
Natalia Sofía Medina Camacho ◽  
Jeffrey L. Boore ◽  
...  

Abstract The evolution of the vertebrate mitochondrial genome has been the focus of numerous genetic and evolutionary studies over the last several decades. Initially, sampling was heavily biased toward taxonomic orders of greatest economic or health importance, but recent advances in DNA sequencing technology have facilitated a much broader phylogenetic sampling from which we can clarify general evolutionary trends such as patterns of gene rearrangement. Toward this end, we performed a comparative genomic analysis of the 2,831 vertebrate mitochondrial genomes representing 12 classes that are available in the NCBI database. Using a combination of bioinformatics methods, we determined that there is a great variation in the proportion of rearrangement by gene and by taxonomic class, with higher rates being observed in Reptilia, Amphibia, Petromyzonti, Mammalia, and Actinopteri. Further, within each class, there is large variation in proportion of reorganization among different orders or even taxonomic families. Eleven events of convergence in the genic order among different taxonomic orders were determined, most of them not previously reported.


1989 ◽  
Vol 216 (2-3) ◽  
pp. 395-401 ◽  
Author(s):  
Christiane Fauron ◽  
Marie Havlik ◽  
David Lonsdale ◽  
Lindy Nichols

2021 ◽  
Vol 22 (24) ◽  
pp. 13230
Author(s):  
Li Chen ◽  
Wenjing Ren ◽  
Bin Zhang ◽  
Wendi Chen ◽  
Zhiyuan Fang ◽  
...  

B. oleracea Ogura CMS is an alloplasmic male-sterile line introduced from radish by interspecific hybridization and protoplast fusion. The introduction of alien cytoplasm resulted in many undesirable traits, which affected the yield of hybrids. Therefore, it is necessary to identify the composition and reduce the content of alien cytoplasm in B. oleracea Ogura CMS. In the present study, we sequenced, assembled, and compared the organelle genomes of Ogura CMS cabbage and its maintainer line. The chloroplast genome of Ogura-type cabbage was completely derived from normal-type cabbage, whereas the mitochondrial genome was recombined from normal-type cabbage and Ogura-type radish. Nine unique regions derived from radish were identified in the mitochondrial genome of Ogura-type cabbage, and the total length of these nine regions was 35,618 bp, accounting for 13.84% of the mitochondrial genome. Using 32 alloplasmic markers designed according to the sequences of these nine regions, one novel sterile source with less alien cytoplasm was discovered among 305 materials and named Bel CMS. The size of the alien cytoplasm in Bel CMS was 21,587 bp, accounting for 8.93% of its mtDNA, which was much less than that in Ogura CMS. Most importantly, the sterility gene orf138 was replaced by orf112, which had a 78-bp deletion, in Bel CMS. Interestingly, Bel CMS cabbage also maintained 100% sterility, although orf112 had 26 fewer amino acids than orf138. Field phenotypic observation showed that Bel CMS was an excellent sterile source with stable 100% sterility and no withered buds at the early flowering stage, which could replace Ogura CMS in cabbage heterosis utilization.


Genome ◽  
2008 ◽  
Vol 51 (10) ◽  
pp. 800-808 ◽  
Author(s):  
Stephen L. Cameron ◽  
Mark Dowton ◽  
Lyda R. Castro ◽  
Kalani Ruberu ◽  
Michael F. Whiting ◽  
...  

We sequenced the entire mitochondrial genome of Abispa ephippium (Hymenoptera: Vespoidea: Vespidae: Eumeninae) and most of the mitochondrial genome of Polistes humilis synoecus (Hymenoptera: Vespoidea: Vespidae: Polistinae). The arrangement of genes differed between the two genomes and also differed slightly from that inferred to be ancestral for the Hymenoptera. The genome organization for both vespids is different from that of all other mitochondrial genomes previously reported. A number of tRNA gene rearrangements were identified that represent potential synapomorphies for a subset of the Vespidae. Analysis of all available hymenopteran mitochondrial genome sequences recovered an uncontroversial phylogeny, one consistent with analyses of other types of data.


Sign in / Sign up

Export Citation Format

Share Document