Model-Free Sliding Mode Controllers

2021 ◽  
pp. 137-166
Author(s):  
Radu-Emil Precup ◽  
Raul-Cristian Roman ◽  
Ali Safaei
Author(s):  
Milutin P. Petronijević ◽  
Čedomir Milosavljević ◽  
Boban Veselić ◽  
Branislava Peruničić-Draženović ◽  
Senad Huseinbegović

2018 ◽  
Vol 2018 ◽  
pp. 1-9 ◽  
Author(s):  
Xiaoqi Song ◽  
Dezhi Xu ◽  
Weilin Yang ◽  
Yan Xia ◽  
Bin Jiang

As a kind of special motors, linear induction motors (LIM) have been an important research field for researchers. However, it gives a great velocity control challenge due to the complex nonlinearity, high coupling, and unique end effects. In this article, an improved model-free adaptive sliding-mode-constrained control method is proposed to deal with this problem dispensing with internal parameters of the LIM. Firstly, an improved compact form dynamic linearization (CFDL) technique is used to simplify the LIM plant. Besides, an antiwindup compensator is applied to handle the problem of the actuator under saturations in case during the controller design. Furthermore, the stability of the closed system is proved by Lyapunov stability method theoretically. Finally, simulation results are given to demonstrate that the proposed controller has excellent dynamic performance and stronger robustness compared with traditional PID controller.


Sign in / Sign up

Export Citation Format

Share Document