Empowering Advances in Medical Devices with 3D-Printing Technology

2021 ◽  
pp. 155-188
Author(s):  
Kashma Rai ◽  
Uma Ullas Pradhan
2021 ◽  
Author(s):  
Callum Allen

<p><b>Pupils can provide important neurological information that can aid in the diagnosis of a range of conditions, including aneurysms, impending strokes and tumors in the lung (Gale, et al). In a research context, there is increasing interest in studying the intrinsically photosensitive Retinal Ganglion cells (ipRGC), which respond to intense blue light thanks to a photo pigment called melanopsin. Studying these cells could lead to a better understanding of sleep disorders and a range of optic nerve diseases. Although commercially available pupil testing devices do exist, all cost upwards of $10,000, and suffer from either poor portability or limitations in the tests they can perform. Specifically, the ipRGC require a specific intensity of blue light to be activated and measured, which most devices cannot produce. </b></p><p>In recent years, the open source movement has enabled users from around the world to freely collaborate on the development and distribution of their own products. At first, only software could be produced using this approach, however the continued improvement of 3D printing technology has enabled the same model to be applied to physical products as well. From a medical perspective, this is particularly exciting. </p><p>The aim of this research was to produce an inexpensive, open source pupilometer that runs on widely available components, can be distributed online and manufactured using 3D printing technology. In doing so, this thesis asks the question; How can an open source development and distribution model be used in conjunction with online 3D printing services and widely available parts and components to produce an inexpensive and open source pupilometer? </p><p>To answer this, a range of practice based methodologies, including research for design and research through design were used to explore this new potential. The resulting design proposal demonstrates how online file sharing platforms, in conjunction with distributed 3D printing services and online supply chains can be combined to develop new medical devices. The ability to collect pupil data using an open source pupilometer may lead to expanded data collection and diagnostic capabilities from doctors in a number of clinical settings, while a cloud based data collection system taking the form of a smartphone app will create a large biometric database and cooperative online research community. </p>


2020 ◽  
Vol 10 (4) ◽  
pp. 242-252
Author(s):  
Shrikrishna T. Mule ◽  
O.G. Bhusnure ◽  
S.S. Waghmare ◽  
Mamta R. Mali

The scrutiny of medical devices industry as well as pharmaceutical industry for its application in health care industry on different platform is captured the 3D printing technique.  3D printing technology withstand for a very long duration only because of the approval of medical devices, 3D printed tablets and also with the advent of USFDA guideline on technical consideration. This technology is specific to devices utilizing preservative manufacturing. Many thoughts are triggered by 3D printing this technology and for successful delivery of intended product which is necessarily take into a consideration. In this review paper expectation limitations of some regulatory companies, Advantages, disadvantages, what type problems are arises while establishing this setups for drug product production, method, application, and manufacturing risk are represented. It also gives information about the current status of 3D printing technology in research and development of drug products.  For the fabrication of novel solid dosage form a number of 3D printing technology have been developed. This review is mainly focused on describing different technology used for the application of 3D printing in pharmaceutical industry.  Keywords: - 3D printing technology, recent trend, Opportunities, personalize medicine, challenges, future.


2021 ◽  
Author(s):  
Callum Allen

<p><b>Pupils can provide important neurological information that can aid in the diagnosis of a range of conditions, including aneurysms, impending strokes and tumors in the lung (Gale, et al). In a research context, there is increasing interest in studying the intrinsically photosensitive Retinal Ganglion cells (ipRGC), which respond to intense blue light thanks to a photo pigment called melanopsin. Studying these cells could lead to a better understanding of sleep disorders and a range of optic nerve diseases. Although commercially available pupil testing devices do exist, all cost upwards of $10,000, and suffer from either poor portability or limitations in the tests they can perform. Specifically, the ipRGC require a specific intensity of blue light to be activated and measured, which most devices cannot produce. </b></p><p>In recent years, the open source movement has enabled users from around the world to freely collaborate on the development and distribution of their own products. At first, only software could be produced using this approach, however the continued improvement of 3D printing technology has enabled the same model to be applied to physical products as well. From a medical perspective, this is particularly exciting. </p><p>The aim of this research was to produce an inexpensive, open source pupilometer that runs on widely available components, can be distributed online and manufactured using 3D printing technology. In doing so, this thesis asks the question; How can an open source development and distribution model be used in conjunction with online 3D printing services and widely available parts and components to produce an inexpensive and open source pupilometer? </p><p>To answer this, a range of practice based methodologies, including research for design and research through design were used to explore this new potential. The resulting design proposal demonstrates how online file sharing platforms, in conjunction with distributed 3D printing services and online supply chains can be combined to develop new medical devices. The ability to collect pupil data using an open source pupilometer may lead to expanded data collection and diagnostic capabilities from doctors in a number of clinical settings, while a cloud based data collection system taking the form of a smartphone app will create a large biometric database and cooperative online research community. </p>


Micromachines ◽  
2020 ◽  
Vol 11 (7) ◽  
pp. 658 ◽  
Author(s):  
Seow Yong Chin ◽  
Vishwesh Dikshit ◽  
Balasankar Meera Priyadarshini ◽  
Yi Zhang

Customized manufacturing of a miniaturized device with micro and mesoscale features is a key requirement of mechanical, electrical, electronic and medical devices. Powder-based 3D-printing processes offer a strong candidate for micromanufacturing due to the wide range of materials, fast production and high accuracy. This study presents a comprehensive review of the powder-based three-dimensional (3D)-printing processes and how these processes impact the creation of devices with micro and mesoscale features. This review also focuses on applications of devices with micro and mesoscale size features that are created by powder-based 3D-printing technology.


2021 ◽  
Author(s):  
Callum Allen

<p><b>Pupils can provide important neurological information that can aid in the diagnosis of a range of conditions, including aneurysms, impending strokes and tumors in the lung (Gale, et al). In a research context, there is increasing interest in studying the intrinsically photosensitive Retinal Ganglion cells (ipRGC), which respond to intense blue light thanks to a photo pigment called melanopsin. Studying these cells could lead to a better understanding of sleep disorders and a range of optic nerve diseases. Although commercially available pupil testing devices do exist, all cost upwards of $10,000, and suffer from either poor portability or limitations in the tests they can perform. Specifically, the ipRGC require a specific intensity of blue light to be activated and measured, which most devices cannot produce. </b></p><p>In recent years, the open source movement has enabled users from around the world to freely collaborate on the development and distribution of their own products. At first, only software could be produced using this approach, however the continued improvement of 3D printing technology has enabled the same model to be applied to physical products as well. From a medical perspective, this is particularly exciting. </p><p>The aim of this research was to produce an inexpensive, open source pupilometer that runs on widely available components, can be distributed online and manufactured using 3D printing technology. In doing so, this thesis asks the question; How can an open source development and distribution model be used in conjunction with online 3D printing services and widely available parts and components to produce an inexpensive and open source pupilometer? </p><p>To answer this, a range of practice based methodologies, including research for design and research through design were used to explore this new potential. The resulting design proposal demonstrates how online file sharing platforms, in conjunction with distributed 3D printing services and online supply chains can be combined to develop new medical devices. The ability to collect pupil data using an open source pupilometer may lead to expanded data collection and diagnostic capabilities from doctors in a number of clinical settings, while a cloud based data collection system taking the form of a smartphone app will create a large biometric database and cooperative online research community. </p>


2018 ◽  
Vol 2 (4) ◽  
Author(s):  
Fei Ma

 3D printing technology belongs to a new manufacturing science and has been widely used in various fields of industry. This article will apply 3D printing technology as its main research topic, with emphasis on its application in the field of medical devices and prospects for contribution.


2021 ◽  
Vol 2021 ◽  
pp. 1-13
Author(s):  
Zhenzhen Wang ◽  
Yan Yang

3D printing technology is widely used in the field of implantable medical device in recent decades because of its advantages in high precision, complex structure, and high material utilization. Based on the characteristics of 3D printing technology, this paper reviews the manufacturing process, materials, and some typical products of 3D printing implantable medical devices and analyzes and summarizes the development trend of 3D printed implantable medical devices.


Author(s):  
Mohd Nazri Ahmad ◽  
Ahmad Afiq Tarmeze ◽  
Amir Hamzah Abdul Rasib

Sign in / Sign up

Export Citation Format

Share Document