Identification of Most Significant Parameter in Estimation of Solar Irradiance at Any Location

2021 ◽  
pp. 75-84
Author(s):  
Shubham Gupta ◽  
Amit Kumar Singh
2018 ◽  
Author(s):  
Amanda Khaira Perdana ◽  
Iswadi Hasyim Rosma

Solar irradiance is one of significant parameter to describe to available potential of solar energy in a particular location. Measuring solar irradiance can be implemented by using different types of sensors, namely: pyranometer, pyrheliometer, light dependent resistor, photodioda and phototransistor. However, when implementing these sensors for solar energy potential measurement, a number of factors must be considered such as: sensor’s price and measurement capability. Therefore, the aim of this article is to analyze the used of low price solar irradiance sensor as part of automatic solar station for measuring solar energy potential in a particular site. BH1750 was used in this article where it has been found that it has limitations such as maximum capability is up to 55.000 lux. A method was introduced to increase measurement capability by putting a cover on the sensor. With this additional cover, specific calibrations need to be carried out to overcome sensor’s accuracy.


2016 ◽  
Vol 136 (12) ◽  
pp. 898-907 ◽  
Author(s):  
Joao Gari da Silva Fonseca Junior ◽  
Hideaki Ohtake ◽  
Takashi Oozeki ◽  
Kazuhiko Ogimoto

Solar Physics ◽  
2021 ◽  
Vol 296 (3) ◽  
Author(s):  
Baoqi Song ◽  
Xin Ye ◽  
Wolfgang Finsterle ◽  
Manfred Gyo ◽  
Matthias Gander ◽  
...  

Energies ◽  
2021 ◽  
Vol 14 (4) ◽  
pp. 1213
Author(s):  
Ahmed Aljanad ◽  
Nadia M. L. Tan ◽  
Vassilios G. Agelidis ◽  
Hussain Shareef

Hourly global solar irradiance (GSR) data are required for sizing, planning, and modeling of solar photovoltaic farms. However, operating and controlling such farms exposed to varying environmental conditions, such as fast passing clouds, necessitates GSR data to be available for very short time intervals. Classical backpropagation neural networks do not perform satisfactorily when predicting parameters within short intervals. This paper proposes a hybrid backpropagation neural networks based on particle swarm optimization. The particle swarm algorithm is used as an optimization algorithm within the backpropagation neural networks to optimize the number of hidden layers and neurons used and its learning rate. The proposed model can be used as a reliable model in predicting changes in the solar irradiance during short time interval in tropical regions such as Malaysia and other regions. Actual global solar irradiance data of 5-s and 1-min intervals, recorded by weather stations, are applied to train and test the proposed algorithm. Moreover, to ensure the adaptability and robustness of the proposed technique, two different cases are evaluated using 1-day and 3-days profiles, for two different time intervals of 1-min and 5-s each. A set of statistical error indices have been introduced to evaluate the performance of the proposed algorithm. From the results obtained, the 3-days profile’s performance evaluation of the BPNN-PSO are 1.7078 of RMSE, 0.7537 of MAE, 0.0292 of MSE, and 31.4348 of MAPE (%), at 5-s time interval, where the obtained results of 1-min interval are 0.6566 of RMSE, 0.2754 of MAE, 0.0043 of MSE, and 1.4732 of MAPE (%). The results revealed that proposed model outperformed the standalone backpropagation neural networks method in predicting global solar irradiance values for extremely short-time intervals. In addition to that, the proposed model exhibited high level of predictability compared to other existing models.


Sign in / Sign up

Export Citation Format

Share Document