Implementing an isotropic damage model in Diana: Use-case for the user-supplied subroutine usrmat

Author(s):  
Peter H. Feenstra
2011 ◽  
Vol 21 (5) ◽  
pp. 713-754 ◽  
Author(s):  
M. S. Niazi ◽  
H. H. Wisselink ◽  
T. Meinders ◽  
J. Huétink

The Lemaitre's continuum damage model is well known in the field of damage mechanics. The anisotropic damage model given by Lemaitre is relatively simple, applicable to nonproportional loads and uses only four damage parameters. The hypothesis of strain equivalence is used to map the effective stress to the nominal stress. Both the isotropic and anisotropic damage models from Lemaitre are implemented in an in-house implicit finite element code. The damage model is coupled with an elasto-plastic material model using anisotropic plasticity (Hill-48 yield criterion) and strain-rate dependent isotropic hardening. The Lemaitre continuum damage model is based on the small strain assumption; therefore, the model is implemented in an incremental co-rotational framework to make it applicable for large strains. The damage dissipation potential was slightly adapted to incorporate a different damage evolution behavior under compression and tension. A tensile test and a low-cycle fatigue test were used to determine the damage parameters. The damage evolution was modified to incorporate strain rate sensitivity by making two of the damage parameters a function of strain rate. The model is applied to predict failure in a cross-die deep drawing process, which is well known for having a wide variety of strains and strain path changes. The failure predictions obtained from the anisotropic damage models are in good agreement with the experimental results, whereas the predictions obtained from the isotropic damage model are slightly conservative. The anisotropic damage model predicts the crack direction more accurately compared to the predictions based on principal stress directions using the isotropic damage model. The set of damage parameters, determined in a uniaxial condition, gives a good failure prediction under other triaxiality conditions.


2021 ◽  
pp. 105678952110405
Author(s):  
Young Kwang Hwang ◽  
Suyeong Jin ◽  
Jung-Wuk Hong

In this study, an effective numerical framework for fracture simulations is proposed using the edge-based smoothed finite element method (ES-FEM) and isotropic damage model. The duality between the Delaunay triangulation and Voronoi tessellation is utilized for the mesh construction and the compatible use of the finite element solution with the Voronoi-cell lattice geometry. The mesh irregularity is introduced to avoid calculating the biased crack path by adding random variation in the nodal coordinates, and the ES-FEM elements are defined along the Delaunay edges. With the Voronoi tessellation, each nodal mass is calculated and the fractured surfaces are visualized along the Voronoi edges. The rotational degrees of freedom are implemented for each node by introducing the elemental formulation of the Voronoi-cell lattice model, and the accurate visualizations of the rotational motions in the Voronoi diagram are achieved. An isotropic damage model is newly incorporated into the ES-FEM formulation, and the equivalent elemental length is introduced with an additional geometric factor to simulate the consistent softening behaviors with reducing the mesh sensitivity. The full matrix form of the smoothed strain-displacement matrix is constructed for optimal use in the element-wise computations during explicit time integration, and parallel computing is implemented for the enhancement of the computational efficiency. The simulated results are compared with the theoretical solutions or experimental results, which demonstrates the effectiveness of the proposed methodology in the simulations of the quasi-brittle fractures.


Author(s):  
Vivian Tini ◽  
Ivaylo N. Vladimirov ◽  
Stefanie Reese

This paper presents the application of a viscoplastic damage model for the lifetime prediction of a typical rocket combustion chamber structure. The material modeling is motivated by extension of the classical rheological model for elastoplasticity with Armstrong-Frederick kinematic hardening into a viscoplastic model. The coupling with damage is performed using the concept of effective stress and the principle of strain equivalence. The material parameters are identified based on experimental results for the high temperature copper alloy NARloy-Z, which is one of the typical combustion chamber wall materials. Finally the applicability of the model will be shown by means of sequentially coupled thermomechanical analyses.


Author(s):  
Ali Nayebi ◽  
Kourosh H. Shirazi

The kinematic hardening theory of plasticity based on the Prager model and incremental isotropic damage is used to evaluate the cyclic loading behavior of a beam under the axial, bending, and thermal loads. This allows damage to be path-dependent. The damage and inelastic deformation are incorporated and they are used for the analysis of the beam. The beam material is assumed to follow linear strain hardening property coupled with isotropic damage. The material strain hardening curves in tension and compression are assumed to be both identical for the isotropic material. Computational aspects of rate independent model is discussed and the constitutive equation of the rate independent plasticity coupled with the damage model are decomposed into the elastic, plastic and damage parts. Return Mapping Algorithm method is used for the correction of the elastoplastic state and for the damage model the algorithm is used according to the governed damage constitutive relation. The effect of the damage phenomenon coupled with the elastoplastic kinematic hardening is studied for deformation and load control loadings.


Author(s):  
J. P. Fan ◽  
C. Y. Tang ◽  
C. L. Chow

A multi-level superelement technique is applied to model the effects of circular voids on the effective elastic properties of a material. A two-dimensional representative volume element with a circular void in its center is initially modeled by a superelement. Using this superelement, a thin planar material with circular voids is constructed. The finite element computation is then conducted to estimate the effective Young’s modulus, Poisson’s ratio and the shear modulus of the material using the ABAQUS code for different void sizes. The values of the isotropic damage variables, DE and DG, under various degree of damage are hence determined. These values are compared with those calculated by using a conventional micromechanics damage model. A new isotropic damage model is proposed based on the results of this analysis. To demonstrate the applicability of this damage model, an example case of a notched cylindrical bar under tensile loading is investigated.


2016 ◽  
Vol 155 ◽  
pp. 49-66 ◽  
Author(s):  
Mao Kurumatani ◽  
Kenjiro Terada ◽  
Junji Kato ◽  
Takashi Kyoya ◽  
Kazuo Kashiyama

2015 ◽  
Vol 05 (03) ◽  
pp. 339-351
Author(s):  
Marcelo Pedreira da Silva ◽  
Magno Teixeira Mota ◽  
Anderson de Souza Matos Gadéa ◽  
Mônica Batista Leite ◽  
Koji de Jesus Nagahama

2021 ◽  
Vol 26 (3) ◽  
pp. 12-27
Author(s):  
Haider M. Al-Jelawy ◽  
Ayad Al-Rumaithi ◽  
Aqeel T. Fadhil ◽  
Mohannad H. Al-Sherrawi

Abstract In this paper, the probabilistic behavior of plain concrete beams subjected to flexure is studied using a continuous mesoscale model. The model is two-dimensional where aggregate and mortar are treated as separate constituents having their own characteristic properties. The aggregate is represented as ellipses and generated under prescribed grading curves. Ellipses are randomly placed so it requires probabilistic analysis for model using the Monte Carlo simulation with 20 realizations to represent geometry uncertainty. The nonlinear behavior is simulated with an isotropic damage model for the mortar, while the aggregate is assumed to be elastic. The isotropic damage model softening behavior is defined in terms of fracture mechanics parameters. This damage model is compared with the fixed crack model in macroscale study before using it in the mesoscale model. Then, it is used in the mesoscale model to simulate flexure test and compared to experimental data and shows a good agreement. The probabilistic behavior of the model response is presented through the standard deviation, moment parameters and cumulative probability density functions in different loading stages. It shows variation of the probabilistic characteristics between pre-peak and post-peak behaviour of load-CMOD curves.


Sign in / Sign up

Export Citation Format

Share Document