Carbon Dioxide Conversion Using Solar Thermal and Photo Catalytic Processes

2021 ◽  
pp. 281-345
Author(s):  
Yatish T. Shah
2021 ◽  
Vol 47 ◽  
pp. 101515 ◽  
Author(s):  
Angel Francis ◽  
Shanmuga Priya S. ◽  
Harish Kumar S ◽  
Sudhakar K ◽  
Muhammad Tahir

2022 ◽  
Vol 73 ◽  
pp. 67-73
Author(s):  
Yiying Sun ◽  
Wenping Li ◽  
Zhuo Wang ◽  
Jiafu Shi ◽  
Zhongyi Jiang

2015 ◽  
Vol 1116 ◽  
pp. 94-129 ◽  
Author(s):  
Maimoon Atif ◽  
Fahad A. Al-Sulaiman

This chapter starts with a background about concentrating solar power systems and thermal energy storage systems and then a detailed literature review about concentrated solar power systems and supercritical Brayton carbon dioxide cycles. Next, a mathematical model was developed and presented which generates and optimizes a heliostat field effectively. This model was developed to demonstrate the optimization of a heliostat field using differential evolution, which is an evolutionary algorithm. The current model illustrates how to employ the developed model and its advantages. The optimization process calculates the optical performance parameters at every step of the optimization considering all the heliostats; thus yields accurate results as discussed in this chapter. On the other hand, complete mathematical model of supercritical CO2Brayton cycles when integrated with solar thermal power tower system was presented and discussed.


2021 ◽  
Vol 25 (12) ◽  
pp. 30-37
Author(s):  
L.G. Pinaeva ◽  
A.S. Noskov

Existing (production of urea, dimethyl carbonate, polypropylene carbonate) and promising (production of methanol, synthesis gas, monomers dedicated to synthesis of polyurethanes and polycarbonate) chemical technologies which any, time soon, may become CO2 based economy for producing motor fuels and basic chemicals have been overviewed. Based on estimates of CO2 removals in these processes, it has been concluded that there is a potential for developing technologies to produce methanol from CO2 to a competitive cost of the target product. It is expected that interest in this process will decrease if stable carbon dioxide conversion catalysts for methane are introduced into the market.


2018 ◽  
Vol 6 ◽  
Author(s):  
Shu-Mei Xia ◽  
Kai-Hong Chen ◽  
Hong-Chen Fu ◽  
Liang-Nian He

2018 ◽  
Vol 131 (4) ◽  
pp. 1146-1149 ◽  
Author(s):  
Pengju Yang ◽  
Hangyu Zhuzhang ◽  
Ruirui Wang ◽  
Wei Lin ◽  
Xinchen Wang

RSC Advances ◽  
2018 ◽  
Vol 8 (45) ◽  
pp. 25342-25350 ◽  
Author(s):  
Adrien Comès ◽  
Xavier Collard ◽  
Luca Fusaro ◽  
Luciano Atzori ◽  
M. Giorgia Cutrufello ◽  
...  

Novel bi-functional catalysts allowing to decrease the reaction temperature for the synthesis of cyclic carbonates below 150 °C were successfully synthesized.


Sign in / Sign up

Export Citation Format

Share Document