The Nonrelativistic Limit of Klein–Gordon and Dirac Equations

Author(s):  
Branko Najman
Author(s):  
Ar Rohim ◽  
Kazushige Ueda ◽  
Kazuhiro Yamamoto ◽  
Shih-Yuin Lin

In this paper, we study the relativistic effect on the wave functions for a bouncing particle in a gravitational field. Motivated by the equivalence principle, we investigate the Klein–Gordon and Dirac equations in Rindler coordinates with the boundary conditions mimicking a uniformly accelerated mirror in Minkowski space. In the nonrelativistic limit, all these models in the comoving frame reduce to the familiar eigenvalue problem for the Schrödinger equation with a fixed floor in a linear gravitational potential, as expected. We find that the transition frequency between two energy levels of a bouncing Dirac particle is greater than the counterpart of a Klein–Gordon particle, while both are greater than their nonrelativistic limit. The different corrections to eigen-energies of particles of different nature are associated with the different behaviors of their wave functions around the mirror boundary.


2011 ◽  
Vol 20 (05) ◽  
pp. 729-743 ◽  
Author(s):  
JOÃO PAULO M. PITELLI ◽  
PATRICIO S. LETELIER

We review the mathematical framework necessary to understand the physical content of quantum singularities in static spacetimes. We present many examples of classical singular spacetimes and study their singularities by using wave packets satisfying Klein–Gordon and Dirac equations. We show that in many cases the classical singularities are excluded when tested by quantum particles but unfortunately there are other cases where the singularities remain from the quantum mechanical point of view. When it is possible we also find, for spacetimes where quantum mechanics does not exclude the singularities, the boundary conditions necessary to turn the spatial portion of the wave operator to be self-adjoint and emphasize their importance to the interpretation of quantum singularities.


2010 ◽  
Vol 19 (07) ◽  
pp. 1463-1475 ◽  
Author(s):  
V. H. BADALOV ◽  
H. I. AHMADOV ◽  
S. V. BADALOV

The radial part of the Klein–Gordon equation for the Woods–Saxon potential is solved. In our calculations, we have applied the Nikiforov–Uvarov method by using the Pekeris approximation to the centrifugal potential for any l-states. The exact bound state energy eigenvalues and the corresponding eigenfunctions are obtained on the various values of the quantum numbers n and l. The nonrelativistic limit of the bound state energy spectrum was also found.


2005 ◽  
Vol 02 (01) ◽  
pp. 129-182 ◽  
Author(s):  
PHILIPPE BECHOUCHE ◽  
NORBERT J. MAUSER ◽  
SIGMUND SELBERG

We study the behavior of solutions of the Dirac–Maxwell system (DM) in the nonrelativistic limit c → ∞, where c is the speed of light. DM is a nonlinear system of PDEs obtained by coupling the Dirac equation for a 4-spinor to the Maxwell equations for the self-consistent field created by the moving charge of the spinor. The limit c → ∞, sometimes also called post-Newtonian, yields a Schrödinger–Poisson system, where the spin and magnetic field no longer appear. We prove that DM is locally well-posed for H1 data (for fixed c), and that as c → ∞ the existence time grows at least as fast as log(c), provided the data are uniformly bounded in H1. Moreover, if the datum for the Dirac spinor converges in H1, then the solution of DM converges, modulo a phase correction, in C([0,T];H1) to a solution of a Schrödinger–Poisson system. Our results also apply to a mixed state formulation of DM, and give also a convergence result for the Pauli equation as the "semi-nonrelativistic" limit. The proof relies on modifications of the bilinear null form estimates of Klainerman and Machedon, and extends our previous work on the nonrelativistic limit of the Klein–Gordon–Maxwell system.


2019 ◽  
Vol 34 (09) ◽  
pp. 1950057 ◽  
Author(s):  
Wajiha Javed ◽  
Rimsha Babar ◽  
Ali Övgün

We analyze the effect of the generalized uncertainty principle (GUP) on the Hawking radiation from the hairy black hole in U(1) gauge-invariant scalar–vector–tensor theory by utilizing the semiclassical Hamilton–Jacobi method. To do so, we evaluate the tunneling probabilities and Hawking temperature for scalar and fermion particles for the given spacetime of the black holes with cubic and quartic interactions. For this purpose, we utilize the modified Klein–Gordon equation for the Boson particles and then Dirac equations for the fermion particles, respectively. Next, we examine that the Hawking temperature of the black holes do not depend on the properties of tunneling particles. Moreover, we present the corrected Hawking temperature of scalar and fermion particles which look similar in both interactions, but there are different mass and momentum relationships for scalar and fermion particles in cubic and quartic interactions.


Sign in / Sign up

Export Citation Format

Share Document