Autonomous Mobile Robots in Unknown Outdoor Environments

Author(s):  
Xiaorui Zhu ◽  
Youngshik Kim ◽  
Mark Andrew Minor ◽  
Chunxin Qiu
ROBOT ◽  
2011 ◽  
Vol 33 (3) ◽  
pp. 265-272 ◽  
Author(s):  
Bo ZHOU ◽  
Xianzhong DAI ◽  
Jianda HAN

Author(s):  
Margot M. E. Neggers ◽  
Raymond H. Cuijpers ◽  
Peter A. M. Ruijten ◽  
Wijnand A. IJsselsteijn

AbstractAutonomous mobile robots that operate in environments with people are expected to be able to deal with human proxemics and social distances. Previous research investigated how robots can approach persons or how to implement human-aware navigation algorithms. However, experimental research on how robots can avoid a person in a comfortable way is largely missing. The aim of the current work is to experimentally determine the shape and size of personal space of a human passed by a robot. In two studies, both a humanoid as well as a non-humanoid robot were used to pass a person at different sides and distances, after which they were asked to rate their perceived comfort. As expected, perceived comfort increases with distance. However, the shape was not circular: passing at the back of a person is more uncomfortable compared to passing at the front, especially in the case of the humanoid robot. These results give us more insight into the shape and size of personal space in human–robot interaction. Furthermore, they can serve as necessary input to human-aware navigation algorithms for autonomous mobile robots in which human comfort is traded off with efficiency goals.


Sign in / Sign up

Export Citation Format

Share Document