Toward socially aware trajectory planning system for autonomous mobile robots in complex environments

Author(s):  
Van Hung Nguyen ◽  
Van Bay Hoang ◽  
Chu Anh My ◽  
Le Minh Kien ◽  
Xuan Tung Truong
2019 ◽  
Vol 48 (2) ◽  
pp. 179-194 ◽  
Author(s):  
Ben Beklisi Kwame Ayawli ◽  
Xue Mei ◽  
Moquan Shen ◽  
Albert Yaw Appiah ◽  
Frimpong Kyeremeh

This paper presents optimized rapidly exploring random trees A* (ORRT-A*) method to improve the performance of RRT-A* method to compute safe and optimal path with low time complexity for autonomous mobile robots in partially known complex environments. ORRT-A* method combines morphological dilation, goal-biased RRT, A* and cubic spline algorithms. Goal-biased RRT is modified by introducing additional step-size to speed up the generation of the tree towards the goal after which A* is applied to obtain the shortest path. Morphological dilation technique is used to provide safety for the robots while cubic spline interpolation is used to smoothen the path for easy navigation. Results indicate that ORRT-A* method demonstrates improved path quality compared to goal-biased RRT and RRT-A* methods. ORRT-A* is therefore a promising method in achieving autonomous ground vehicle navigation in unknown environments


2021 ◽  
Vol 13 (4) ◽  
pp. 168781402110027
Author(s):  
Jianqiang Wang ◽  
Yanmin Zhang ◽  
Xintong Liu

To realize efficient palletizing robot trajectory planning and ensure ultimate robot control system universality and extensibility, the B-spline trajectory planning algorithm is used to establish a palletizing robot control system and the system is tested and analyzed. Simultaneously, to improve trajectory planning speeds, R control trajectory planning is used. Through improved algorithm design, a trajectory interpolation algorithm is established. The robot control system is based on R-dominated multi-objective trajectory planning. System stack function testing and system accuracy testing are conducted in a production environment. During palletizing function testing, the system’s single-step code packet time is stable at approximately 5.8 s and the average evolutionary algebra for each layer ranges between 32.49 and 45.66, which can save trajectory planning time. During system accuracy testing, the palletizing robot system’s repeated positioning accuracy is tested. The repeated positioning accuracy error is currently 10−1 mm and is mainly caused by friction and the machining process. By studying the control system of a four-degrees-of-freedom (4-DOF) palletizing robot based on the trajectory planning algorithm, the design predictions and effects are realized, thus providing a reference for more efficient future palletizing robot design. Although the working process still has some shortcomings, the research has major practical significance.


Author(s):  
Margot M. E. Neggers ◽  
Raymond H. Cuijpers ◽  
Peter A. M. Ruijten ◽  
Wijnand A. IJsselsteijn

AbstractAutonomous mobile robots that operate in environments with people are expected to be able to deal with human proxemics and social distances. Previous research investigated how robots can approach persons or how to implement human-aware navigation algorithms. However, experimental research on how robots can avoid a person in a comfortable way is largely missing. The aim of the current work is to experimentally determine the shape and size of personal space of a human passed by a robot. In two studies, both a humanoid as well as a non-humanoid robot were used to pass a person at different sides and distances, after which they were asked to rate their perceived comfort. As expected, perceived comfort increases with distance. However, the shape was not circular: passing at the back of a person is more uncomfortable compared to passing at the front, especially in the case of the humanoid robot. These results give us more insight into the shape and size of personal space in human–robot interaction. Furthermore, they can serve as necessary input to human-aware navigation algorithms for autonomous mobile robots in which human comfort is traded off with efficiency goals.


Sign in / Sign up

Export Citation Format

Share Document