Wavelet Methods for Solving Partial Differential Equations and Fractional Differential Equations

Author(s):  
Santanu Saha Ray ◽  
Arun Kumar Gupta
2021 ◽  
Vol 2090 (1) ◽  
pp. 012031
Author(s):  
E.A. Abdel-Rehim

Abstract The fractional calculus gains wide applications nowadays in all fields. The implementation of the fractional differential operators on the partial differential equations make it more reality. The space-time-fractional differential equations mathematically model physical, biological, medical, etc., and their solutions explain the real life problems more than the classical partial differential equations. Some new published papers on this field made many treatments and approximations to the fractional differential operators making them loose their physical and mathematical meanings. In this paper, I answer the question: why do we need the fractional operators?. I give brief notes on some important fractional differential operators and their Grünwald-Letnikov schemes. I implement the Caputo time fractional operator and the Riesz-Feller operator on some physical and stochastic problems. I give some numerical results to some physical models to show the efficiency of the Grünwald-Letnikov scheme and its shifted formulae. MSC 2010: Primary 26A33, Secondary 45K05, 60J60, 44A10, 42A38, 60G50, 65N06, 47G30,80-99


2021 ◽  
Vol 29 (1) ◽  
Author(s):  
E. A. Abdel-Rehim

AbstractIn this review paper, I focus on presenting the reasons of extending the partial differential equations to space-time fractional differential equations. I believe that extending any partial differential equations or any system of equations to fractional systems without giving concrete reasons has no sense. The experiments agrees with the theoretical studies on extending the first order-time derivative to time-fractional derivative. The simulations of some processes also agrees with the theory of continuous time random walks for extending the second-order space fractional derivative to the Riesz–Feller fractional operators. For this aim, I give a condense review the theory of Brownian motion, Langevin equations, diffusion processes and the continuous time random walk. Some partial differential equations that are successfully extended to space-time-fractional differential equations are also presented.


2012 ◽  
Vol 16 (2) ◽  
pp. 331-334 ◽  
Author(s):  
Ji-Huan He ◽  
Zheng-Biao Li

A transform is suggested in this paper to convert fractional differential equations with the modified Riemann-Liouville derivative into partial differential equations, and it is concluded that the fractional order in fractional differential equations is equivalent to the fractal dimension.


2018 ◽  
Vol 21 (2) ◽  
pp. 312-335 ◽  
Author(s):  
Xiao-Li Ding ◽  
Juan J. Nieto

AbstractIn this paper, we consider the analytical solutions of multi-term time-space fractional partial differential equations with nonlocal damping terms for general mixed Robin boundary conditions on a finite domain. Firstly, method of reduction to integral equations is used to obtain the analytical solutions of multi-term time fractional differential equations with integral terms. Then, the technique of spectral representation of the fractional Laplacian operator is used to convert the multi-term time-space fractional partial differential equations with nonlocal damping terms to the multi-term time fractional differential equations with integral terms. By applying the obtained analytical solutions to the resulting multi-term time fractional differential equations with integral terms, the desired analytical solutions of the multi-term time-space fractional partial differential equations with nonlocal damping terms are given. Our results are applied to derive the analytical solutions of some special cases to demonstrate their applicability.


2020 ◽  
Vol 5 (2) ◽  
pp. 35-48 ◽  
Author(s):  
Kamal Ait Touchent ◽  
Zakia Hammouch ◽  
Toufik Mekkaoui

AbstractIn this work, the well known invariant subspace method has been modified and extended to solve some partial differential equations involving Caputo-Fabrizio (CF) or Atangana-Baleanu (AB) fractional derivatives. The exact solutions are obtained by solving the reduced systems of constructed fractional differential equations. The results show that this method is very simple and effective for constructing explicit exact solutions for partial differential equations involving new fractional derivatives with nonlocal and non-singular kernels, such solutions are very useful to validate new numerical methods constructed for solving partial differential equations with CF and AB fractional derivatives.


2021 ◽  
Vol 21 (2) ◽  
pp. 355-364
Author(s):  
ABDELKADER KEHAILI ◽  
ABDELKADER BENALI ◽  
ALI HAKEM

In this paper, we apply an efficient method called the Homotopy perturbation transform method (HPTM) to solve systems of nonlinear fractional partial differential equations. The HPTM can easily be applied to many problems and is capable of reducing the size of computational work.


Author(s):  
Rosario Antonio Leo ◽  
Gabriele Sicuro ◽  
Piergiulio Tempesta

AbstractWe provide a general theoretical framework allowing us to extend the classical Lie theory for partial differential equations to the case of equations of fractional order. We propose a general prolongation formula for the study of Lie symmetries in the case of an arbitrary finite number of independent variables. We also prove the Lie theorem in the case of fractional differential equations, showing that the proper space for the analysis of these symmetries is the infinite dimensional jet space.


Sign in / Sign up

Export Citation Format

Share Document