scholarly journals Wavelet methods for solving three-dimensional partial differential equations

2017 ◽  
Vol 11 (2) ◽  
pp. 145-154 ◽  
Author(s):  
Inderdeep Singh ◽  
Sheo Kumar
2019 ◽  
Vol 4 (1) ◽  
pp. 149-155
Author(s):  
Kholmatzhon Imomnazarov ◽  
Ravshanbek Yusupov ◽  
Ilham Iskandarov

This paper studies a class of partial differential equations of second order , with arbitrary functions and , with the help of the group classification. The main Lie algebra of infinitely infinitesimal symmetries is three-dimensional. We use the method of preliminary group classification for obtaining the classifications of these equations for a one-dimensional extension of the main Lie algebra.


Author(s):  
Mohamed Soror Abdel Latif ◽  
Abass Hassan Abdel Kader

In this chapter, the authors discuss the effectiveness of the invariant subspace method (ISM) for solving fractional partial differential equations. For this purpose, they have chosen a nonlinear time fractional partial differential equation (PDE) with variable coefficients to be investigated through this method. One-, two-, and three-dimensional invariant subspace classifications have been performed for this equation. Some new exact solutions have been obtained using the ISM. Also, the authors give a comparison between this method and the homogeneous balance principle (HBP).


1977 ◽  
Vol 44 (1) ◽  
pp. 51-56 ◽  
Author(s):  
N. S. V. Kameswara Rao ◽  
Y. C. Das

A mixed method for three-dimensional elasto-dynamic problems has been formulated which gives a complete choice in prescribing the boundary conditions in terms of either stresses, or displacements, or partly stresses and partly displacements. The general expressions for the responses of the elastic body have been derived in the form of transcendental partial differential equations of a set of initial functions, which can be evaluated in terms of the prescribed boundary conditions. The method so-formulated has been illustrated by applying it to the theory of plates. Only plates subjected to antisymmetric loads have been considered for illustration. Some examples of free and forced vibration of plates have been presented. Results are compared with solutions from existing theories.


2000 ◽  
Vol 10 (05) ◽  
pp. 629-650 ◽  
Author(s):  
C. EBMEYER

In this paper the system of partial differential equations [Formula: see text] is studied, where e is the symmetrized gradient of u, and T has p-structure for some p<2 (e.g. div T is the p-Laplacian and p<2). Mixed boundary value conditions on a three-dimensional polyhedral domain are considered. Ws,p-regularity (s=3/2-ε) of the velocity u and Wr,p′-regularity of the pressure π are proven.


Author(s):  
A. A. Boretti

The paper presents a computer code for steady and unsteady, three-dimensional, compressible, turbulent, viscous flow simulations. The mathematical model is based on the Favre-averaged Navier-Stokes conservation equations, closed by a statistical model of turbulence. Turbulence effects are represented by using a low Reynolds number K-ω model. The numerical model makes use of a finite difference approximation in generalized coordinates for space discretization. The solution of time-dependent, three-dimensional, non-homogeneous, partial differential equations is obtained by solving, in a prescribed, symmetric pattern, three time-dependent, one-dimensional, homogeneous partial differential equations, representing convection and diffusion along each generalized coordinate direction, and one ordinary differential equation, representing generation and destruction. An explicit, multi-step, dissipative, Runge-Kutta scheme is finally adopted for time discretization. The code is applied to simulate the flow through a linear cascade of turbine rotor blades, where detailed experimental data are available. Blade aerodynamic and heat transfer are computed, at variable Reynolds and Mach numbers and turbulence levels, and compared with experimental data. While the aerodynamic prediction is relatively unaffected by the properties of both mathematical and numerical models, the heat transfer prediction proves to be extremely sensitive to models details. Low Reynolds number K-ω turbulence models theoretically reproduce laminar, turbulent and transitional boundary layers. However, their practical use in a Navier-Stokes code does not allow to entirely capture the effects of turbulence intensity and Mach and Reynolds numbers on blade heat transfer.


Sign in / Sign up

Export Citation Format

Share Document