Chapter 3 Numerical analysis of the interaction between two zipper fracture wells using the continuum damage method

2017 ◽  
Vol 38 (1) ◽  
pp. 25-30
Author(s):  
Yan-Feng Li ◽  
Zhisheng Zhang ◽  
Chenglin Zhang ◽  
Jie Zhou ◽  
Hong-Zhong Huang

Abstract This paper deals with the creep characteristics of the aircraft turbine disc material of nickel-base superalloy GH4169 under high temperature. From the perspective of continuum damage mechanics, a new creep life prediction model is proposed to predict the creep life of metallic materials under both uniaxial and multiaxial stress states. The creep test data of GH4169 under different loading conditions are used to demonstrate the proposed model. Moreover, from the perspective of numerical simulation, the test data with analysis results obtained by using the finite element analysis based on Graham creep model is carried out for comparison. The results show that numerical analysis results are in good agreement with experimental data. By incorporating the numerical analysis and continuum damage mechanics, it provides an effective way to accurately describe the creep damage process of GH4169.


Author(s):  
Sahar Ghatrehsamani ◽  
Saleh Akbarzadeh

Wear coefficient and friction coefficient are two of the key parameters in the performance of any tribo-system. The main purpose of the present research is to use continuum damage mechanics to predict wear coefficient. Thus, a contact model is utilized that can be used to obtain the friction coefficient between the contacting surfaces. By applying this model to the continuum damage mechanics model, the wear coefficient between dry surfaces is predicted. One of the advantages of using this model is that the wear coefficient can be numerically predicted unlike other methods which highly rely on experimental data. In order to verify the results predicted by this model, tests were performed using pin-on-disk test rig for several ST37 samples. The results indicated that the wear coefficient increases with increasing the friction coefficient.


2011 ◽  
Vol 194-196 ◽  
pp. 919-923 ◽  
Author(s):  
Dong Fang Pan ◽  
Yun Feng Qiao ◽  
Cheng Shuai Sun ◽  
Xue Bing Liu

To propose the damage model of concrete in the freezing-thawing cycles, the reasonable dissipation function and micro plastic deformation expression have been determined based on the continuum damage mechanics. The damage variable is expressed as a function of the number of freezing-thawing cycle. The damage is defined in terms of the loss of the dynamic elastic modules and the damage model of the concrete in the freezing-thawing cycles has been presented.


Sign in / Sign up

Export Citation Format

Share Document