Implementation plan for load rating prestressed concrete bridges without plans

Author(s):  
C.V. Aguilar ◽  
D.V. Jauregui ◽  
B.D. Weldon ◽  
C.M. Newtson
2021 ◽  
Vol 16 (4) ◽  
pp. 155-167
Author(s):  
Nandhu Pillay Thulaseedharan ◽  
Matthew Thomas Yarnold

Autonomous truck platoons shall soon be traveling our highway system with greater frequency. The objective of the presented study is to conduct a high-level evaluation of the Texas concrete bridge inventory when subjected to potential truck platoon loading. The National Bridge Inventory (NBI) database is utilized to the greatest extent possible. In addition, a significant literature review is performed to make assumptions allowing estimated load rating calculations for the prestressed concrete bridges likely to support future platoons (nearly 3,000 bridges). The truck platoon load ratings, combined with the NBI structural evaluation condition ratings, are utilized to prioritize each bridge. As a result, bridges are identified for more detailed evaluation prior to future truck platoon implementation. Data analysis was also performed to further understand the impact of various parameters on the load rating and prioritization results. Conclusions were drawn regarding the sensitivity of the (1) original design methodology, (2) bridge span length, (3) truck type, (4) truck spacing and (5) number of trucks within a platoon. In addition, a secondary benefit of the study is a presented framework for other bridge owners to prioritize their bridges that may be subjected to truck platoon or other heavy vehicle loading.


Author(s):  
Rolando Salgado-Estrada ◽  
Sergio A. Zamora-Castro ◽  
Agustín L. Herrera-May ◽  
Yessica A. Sánchez-Moreno ◽  
Yair S. Sánchez-Moreno

2017 ◽  
Vol 17 (02) ◽  
pp. 1750023 ◽  
Author(s):  
Xia-Chun Chen ◽  
Zhen-Hu Li ◽  
Francis T. K. Au ◽  
Rui-Juan Jiang

Prestressed concrete bridges with corrugated steel webs have emerged as a new form of steel-concrete composite bridges with remarkable advantages compared with the traditional ones. However, the assumption that plane sections remain plane may no longer be valid for such bridges due to the different behavior of the constituents. The sandwich beam theory is extended to predict the flexural vibration behavior of this type of bridges considering the presence of diaphragms, external prestressing tendons and interaction between the web shear deformation and flange local bending. To this end, a [Formula: see text] beam finite element is formulated. The proposed theory and finite element model are verified both numerically and experimentally. A comparison between the analyses based on the sandwich beam model and on the classical Euler–Bernoulli and Timoshenko models reveals the following findings. First of all, the extended sandwich beam model is applicable to the flexural vibration analysis of the bridges considered. By letting [Formula: see text] denote the square root of the ratio of equivalent shear rigidity to the flange local flexural rigidity, and L the span length, the combined parameter [Formula: see text] appears to be more suitable for considering the diaphragm effect and the interaction between the shear deformation and flange local bending. The diaphragms have significant effect on the flexural natural frequencies and mode shapes only when the [Formula: see text] value of the bridge falls below a certain limit. For a bridge with an [Formula: see text] value over a certain limit, the flexural natural frequencies and mode shapes obtained from the sandwich beam model and the classical Euler–Bernoulli and Timoshenko models tend to be the same. In such cases, either of the classical beam theories may be used.


Sign in / Sign up

Export Citation Format

Share Document