vehicle loading
Recently Published Documents


TOTAL DOCUMENTS

138
(FIVE YEARS 48)

H-INDEX

9
(FIVE YEARS 4)

2021 ◽  
Author(s):  
Jaikishan Soman ◽  
Rahul J Patil

Abstract In this paper, we study a two-dimensional vehicle loading and routing problem, in which customer orders with deadlines become available for dispatch as per their release dates. The objective is to minimize the sum of transportation, inventory, and tardiness costs, while respecting various loading and routing constraints. This scenario allows us to study various tradeoffs that tend to arise due to temporal order aggregation across release dates. We thereby propose an integrated mathematical formulation to simultaneously model both the routing and loading requirements of the problem at hand. Specifically, as the problem is NP-hard, we propose a scatter search based heuristic approach to solve large-size instances. Further, its performance is enhanced using problem-specific procedures and strategic oscillation approaches. Additionally, the numerical experiments illustrate the influence of cost structures on both the optimal loading configurations along with the optimal routes. Importantly, our experiments also suggest that the proposed scatter search method can produce good quality solutions in less time.


Author(s):  
Stefano d’Ambrosio ◽  
Roberto Vitolo

The contribution of the tire-road slip of traction wheels to the total resistance opposing the motion of a light-duty commercial vehicle has been investigated through the simulation of several homologation and custom driving cycles. The calculation of the contribution of the tire slip losses was based on the estimation of the longitudinal tire slip, by means of Pacejka’s MF5.2 tire model. In this work, the computational steps required to evaluate this contribution were implemented in a previously developed fuel consumption simulation tool. Simulations were performed under several vehicle loading conditions and tire inflation pressures on traction and non-traction wheels, and considering different tire-road adherence conditions, in order to obtain a characterization of the tire slip losses over a wide range of working conditions. An analysis of the results shows that, although the contribution of tire slip losses to the total vehicle energy demand and fuel consumption may be relevant – especially under low-load, low adherence conditions – the sensitivity of the average on-cycle vehicle energy/fuel consumption to changes in the tire inflation pressure is only affected slightly by tire slip losses. Therefore, tire slip losses can be neglected in practice, when the aim of a simulation is to optimize the tire pressure to achieve average vehicle working conditions over a driving cycle.


2021 ◽  
Vol 11 (22) ◽  
pp. 11010
Author(s):  
Sung-Wan Kim ◽  
Da-Woon Yun ◽  
Dong-Uk Park ◽  
Sung-Jin Chang ◽  
Jae-Bong Park

Maintenance of bridges in use is essential and measuring the live load distribution factor (LLDF) of a bridge to examine bridge integrity and safety is important. A vehicle loading test has been used to measure the LLDF of a bridge. To carry this out on a bridge in use, traffic control is required because loading must be performed at designated positions using vehicles whose details are known. This makes it difficult to measure LLDF. This study proposed a method of estimating the LLDF of a bridge using the vertical displacement response caused by traveling vehicles under ambient vibration conditions in the absence of vehicle control. Since the displacement response measured from a bridge included both static and dynamic components, the static component required for the estimation of LLDF was extracted using empirical mode decomposition (EMD). The vehicle loading and ambient vibration tests were conducted to verify the validity of the proposed method. It was confirmed that the proposed method can effectively estimate the LLDF of a bridge if the vehicle type and driving lane on the bridge are identified in the ambient vibration test.


2021 ◽  
Vol 2021 ◽  
pp. 1-13
Author(s):  
Xiaobo Zheng ◽  
Gang Zhang ◽  
Yongfei Zhang ◽  
Leping Ren

The geometric agreement, commonly hailed as load-transferring paths withinbridge structures, is significantly crucial to the bridge structural mechanicalperformance, such as capacity, deformation, and collapse behavior. This paperpresents a methodology dependent on alternative load paths to investigate thecollapse behavior of a double-pylon cable-stayed bridge with steel truss girderssubjected to excess vehicle loading. The cable-stayed bridge with steel trussgirders is simplified using a series-parallel load-bearing system. This researchmanifests that the enforced vehicle loading can be transferred to alternativepaths of cable-stayed bridges in different load-structure scenarios. A 3-Dfinite element model is established utilizing computer software ANSYS to explorethe collapse path of cable-stayed bridge with steel truss girders, taking intoaccount chord failure, loss of cables together with corrosion in steel trussgirders. The results show that chord failures in the mid-portion of the mainspan result in brittle damage in truss girders or even sudden bridge collapse. Further,the loss of long cables leads to ductile damage with significant displacement.The corrosion in steel truss girders has a highly slight influence on the collapsebehavior of cable-stayed bridge. The proposed methodology can be reliably usedto assess and determine the vulnerability of cable-stayed bridge with steeltruss girders during their service lifetime, thus preventing structural collapsesin this type of bridge.


Energies ◽  
2021 ◽  
Vol 14 (22) ◽  
pp. 7524
Author(s):  
Piotr Szewczyk ◽  
Andrzej Łebkowski

This article presents the results of energy consumption research for an electric light commercial vehicle (eLCV) powered by a centrally located motor (4 × 2 drive system) or motors placed in the vehicle’s wheels (4 × 4 drive system). For the considered constructions of electric drive systems, mathematical models of 4 × 2 and 4 × 4 drive systems were developed in the Modelica simulation environment, based on real data. Additionally, the influence of changes in the vehicle loading condition on the operation of the motor mounted in the wheel and the energy consumption of the drive module was investigated. On the basis of the conducted research, a comparative analysis of energy consumption by electric drive systems in 4 × 2 and 4 × 4 configurations was carried out for selected test cycles. The tests carried out with the Worldwide harmonized Light vehicles Test Cycles (WLTC) test cycle showed a roughly 6% lower energy consumption by the 4 × 4 drive system compared to the 4 × 2 configuration.


2021 ◽  
Vol 13 (20) ◽  
pp. 11288
Author(s):  
Shihab Uddin ◽  
Qing Lu ◽  
Hung Nguyen

In the development of sustainable and resilient infrastructures to adapt to the rapidly changing natural and social environment, the complexity of the dependencies and interdependencies within critical infrastructure systems need to be fully understood, as they affect various components of risk and lead to cascading failures. Water and road infrastructures are highly co-located but often managed and maintained separately. One important aspect of their interdependence is the impact of vehicle loading on a road on underlying water pipes. The existing studies lack a comprehensive evaluation of this subject and do not consider possible critical failure scenarios. This study constructed finite element models to analyze the responses of buried water pipes to vehicle loads under an array of scenarios, including various loads, pipe materials, pipe dimensions, and possible extreme conditions, such as corrosion in pipes and a sinkhole under the pipe. The results showed negligible impact of heavy trucks on buried water pipes. The pipe deflection under a maximum allowable truck load in the worst condition was still within the allowable range specified in standards such as those from the American Water Works Association. This implies that the impact of heavy vehicles on water pipes may not need to be considered in the context of the interdependency between water and road infrastructures, which leads to a more unidirectional dependency between these two infrastructures.


2021 ◽  
Vol 2021 ◽  
pp. 1-16
Author(s):  
Xian-Sheng Li ◽  
Yuan-Yuan Ren ◽  
Xue-Lian Zheng

Influenced by lateral liquid sloshing in partially filled tanks, tank vehicles are apt to encounter with rollover accidents. Due to its strong nonlinearity and loading state uncertainty, it has great challenges in tank vehicle active control. Based on the model-free adaptive control (MFAC) theory, the roll stability control problem of tank trucks with different tank shapes and liquid fill percentages is explored. First, tank trucks equipped with cylinder or elliptical cylinder tanks are modelled, and vehicle dynamics is analyzed. This dynamic model is used to provide I/O data in the controlled system. Next, the control objective of tank vehicle rollover stabilization is analyzed and the controlled variable is selected. Subsequently, differential braking and active front steering controller are designed by MFAC algorithm. Finally, the effectiveness of the designed controllers is verified by simulation, and difference between the controllers is analyzed. The controller designed by MFAC algorithm is proven to be adaptive to vehicle loading and driving states. The controlled system has great robustness.


2021 ◽  
Author(s):  
Meghan Quinn

Distributed Acoustic Sensing (DAS) is a fiber optic sensing system that is used for vibration monitoring. At a minimum, DAS is composed of a fiber optic cable and an optic analyzer called an interrogator. The oil and gas industry has used DAS for over a decade to monitor infrastructure such as pipelines for leaks, and in recent years changes in DAS performance over time have been observed for DAS arrays that are buried in the ground. This dissertation investigates the effect that soil type, soil temperature, soil moisture, time in-situ, and vehicle loading have on DAS performance for fiber optic cables buried in soil. This was accomplished through a field testing program involving two newly installed DAS arrays. For the first installation, a new portion of DAS array was added to an existing DAS array installed a decade prior. The new portion of the DAS array was installed in four different soil types: native fill, sand, gravel, and an excavatable flowable fill. Soil moisture and temperature sensors were buried adjacent to the fiber optic cable to monitor seasonal environmental changes over time. Periodic impact testing was performed at set locations along the DAS array for over one year. A second, temporary DAS array was installed to test the effect of vehicle loading on DAS performance. Signal to Noise Ratio (SNR) of the DAS response was used for all the tests to evaluate the system performance. The results of the impact testing program indicated that the portions of the array in gravel performed more consistently over time. Changes in soil moisture or soil temperature did not appear to affect DAS performance. The results also indicated that time DAS performance does change somewhat over time. Performance variance increased in new portions of array in all material types through time. The SNR in portions of the DAS array in native silty sand material dropped slightly, while the SNR in portions of the array in sand fill and flowable fill material decreased significantly over time. This significant change in performance occurred while testing halted from March 2020 to August 2020 due to the Covid-19 pandemic. These significant changes in performance were observed in the new portion of test bed, while the performance of the prior installation remained consistent. It may be that, after some time in-situ, SNR in a DAS array will reach a steady state. Though it is unfortunate that testing was on pause while changes in DAS performance developed, the observed changes emphasize the potential of DAS to be used for infrastructure change-detection monitoring. In the temporary test bed, increasing vehicle loads were observed to increase DAS performance, although there was considerable variability in the measured SNR. The significant variation in DAS response is likely due to various industrial activities on-site and some disturbance to the array while on-boarding and off-boarding vehicles. The results of this experiment indicated that the presence of load on less than 10% of an array channel length may improve DAS performance. Overall, this dissertation provides guidance that can help inform the civil engineering community with respect to installation design recommendations related to DAS used for infrastructure monitoring.


Animals ◽  
2021 ◽  
Vol 11 (5) ◽  
pp. 1406
Author(s):  
Lenka Valkova ◽  
Vladimir Vecerek ◽  
Eva Voslarova ◽  
Michal Kaluza ◽  
Daniela Takacova

The welfare of cattle, pigs, sheep and goats was assessed by measuring trauma detected during veterinary postmortem inspection at slaughterhouses. The subject of this evaluation were all bovine, porcine, ovine and caprine animals slaughtered at Czech slaughterhouses in the monitored period, i.e., a total of 1,136,754 cows, 257,912 heifers, 1,015,541 bulls, 104,459 calves, 586,245 sows, 25,027,303 finisher pigs, 123,191 piglets, 22,815 ewes, 114,264 lambs, 1348 does and 5778 kids. The data on the numbers of traumatic findings were obtained retrospectively from a national veterinary database collecting data from slaughterhouse postmortem examinations. The results showed that findings of trauma were observed at a low frequency in the studied species. Injuries were detected most frequently in cows (1.71%). In contrast, no findings associated with the presence of trauma were recorded in does and kids. From the viewpoint of trauma localization, findings on the limbs were more frequent than findings on the body (p < 0.01). The only exceptions to this were lambs, does and kids, for which there was no statistically significant difference between findings on the limbs and the body (p = 1.00). The results show that housing system (bedding, the presence of slats, floor hardness), transport of animals to the slaughterhouse (moving animals to the vehicle, loading ramps, floors in transport vehicles and the transport of animals itself) and design of the slaughterhouse (unloading ramps, passageways and slaughterhouse floors) have a greater impact on the limbs than the bodies of animals in the majority of species. A difference was also demonstrated in the occurrence of findings of trauma in the limbs and body (p < 0.01) between culled adult animals and fattened animals, namely in cattle and pigs. A difference (p < 0.01) between ewes and lambs was found only in the occurrence of traumatic injury to the limbs. The results showed that fattened animals are affected by the risk of trauma to a lesser extent than both culled adult animals and young animals. Statistically significant differences (p < 0.01) were also found between the studied species and categories of animals. The category most affected from the viewpoint of injury both to the limbs and body was cows. In contrast to cows that are typically reared indoors, the low frequency of traumatic findings was found in small ruminants and in bulls, i.e., animals typically reared outdoors. Assumedly, access to pasture may be beneficial considering the risk of traumatic injury.


Author(s):  
Stefano d’Ambrosio ◽  
Edoardo De Mattei ◽  
Roberto Vitolo ◽  
Nicola Amati

The paper investigates the effect of tire inflation pressure on the lateral dynamics of a passenger car, and presents a possible control-oriented methodology aimed at adapting tire pressure to the current vehicle loading condition targeting a reference characteristic. Starting from the tire characteristics at several inflation pressure levels, the paper investigates the effect of changing selectively tire pressure on each of the two axles, through theoretical calculation of the curvature gain based on the computation of the derivatives of stability, and compares the obtained sensitivity to the results of a multibody simulation model validated through on-track tests. Finally, the work presents a possible algorithm that could be implemented on-board vehicle ECU to provide, for the current loading condition of the vehicle, a tire pressure combination that targets a specific lateral dynamics characteristic. The algorithm is intended as part of the control logic of an intelligent Central Tire Inflation System (CTIS) able to adjust automatically tire pressure according to the actual vehicle working conditions.


Sign in / Sign up

Export Citation Format

Share Document