Inference-Based and Modular Decentralized Control of Manufacturing Systems with Event-Driven Dynamics

2018 ◽  
pp. 315-342
Author(s):  
Shigemasa Takai ◽  
Ratnesh Kumar
2011 ◽  
Vol 44 (1) ◽  
pp. 14048-14054 ◽  
Author(s):  
V. Feoktistova ◽  
A. Matveev ◽  
E. Lefeber ◽  
J.E. Rooda

2012 ◽  
Vol 24 (3) ◽  
pp. 441-451 ◽  
Author(s):  
Fei Chen ◽  
◽  
Kosuke Sekiyama ◽  
Baiqing Sun ◽  
Pei Di ◽  
...  

In electronic manufacturing systems, the design of the robotic hand is important for successful accomplishment of the assembly task, and also for human and robot coworker coordinated assembly. Due to the restrictions on the architecture of traditional robotic hands, the status of assembly parts, such as position and rotation during the assembly process cannot be detected effectively. In this research, an intelligent robotic hand – i-Hand, equipped with multiple small sensors – is designed and built for this purpose. Mating connectors by robot, as an experimental case in this paper, is studied to evaluate i-Hand performance. A new model that converts the traditional time-zone-driven model to an event-driven model is proposed to describe the process ofmating connectors, within which, most importantly, the distance between the connector and deformable Printed Circuit Board (PCB) is detected by i-Hand. The generated curve has provided more robust parameters than our previously studied Fault Detection and Diagnosis (FDD) classifier. Various possible situations during assembly are considered and handled based on this event-driven work flow. The effectiveness of our proposed model and algorithm is proven in experiments.


2018 ◽  
Vol 66 (5) ◽  
pp. 438-448 ◽  
Author(s):  
Juliane Fischer ◽  
Marga Marcos ◽  
Birgit Vogel-Heuser

Abstract The rising number of product variants requires flexible manufacturing systems, including their internal material flow systems (MFSs). An approach to design MFSs reconfigurably is the use of a decentralized control based on software agents. For implementing an agent-based control approach for MFSs this paper presents a meta model describing the knowledge base of individual agents and the overall control task to be fulfilled by the MFS.


Sign in / Sign up

Export Citation Format

Share Document