Soil Moisture Estimation Using Active and Passive Remote Sensing Techniques

2016 ◽  
pp. 37-56
Author(s):  
Ming Pan ◽  
Xing Yuan ◽  
Hui Lu ◽  
Xiaodong Li ◽  
Guanghua Qin
2019 ◽  
Vol 12 (2) ◽  
pp. 1183-1206 ◽  
Author(s):  
Florian Ewald ◽  
Tobias Zinner ◽  
Tobias Kölling ◽  
Bernhard Mayer

Abstract. Convective clouds play an essential role for Earth's climate as well as for regional weather events since they have a large influence on the radiation budget and the water cycle. In particular, cloud albedo and the formation of precipitation are influenced by aerosol particles within clouds. In order to improve the understanding of processes from aerosol activation, from cloud droplet growth to changes in cloud radiative properties, remote sensing techniques become more and more important. While passive retrievals for spaceborne observations have become sophisticated and commonplace for inferring cloud optical thickness and droplet size from cloud tops, profiles of droplet size have remained largely uncharted territory for passive remote sensing. In principle they could be derived from observations of cloud sides, but faced with the small-scale heterogeneity of cloud sides, “classical” passive remote sensing techniques are rendered inappropriate. In this work the feasibility is demonstrated to gain new insights into the vertical evolution of cloud droplet effective radius by using reflected solar radiation from cloud sides. Central aspect of this work on its path to a working cloud side retrieval is the analysis of the impact unknown cloud surface geometry has on effective radius retrievals. This study examines the sensitivity of reflected solar radiation to cloud droplet size, using extensive 3-D radiative transfer calculations on the basis of realistic droplet size resolving cloud simulations. Furthermore, it explores a further technique to resolve ambiguities caused by illumination and cloud geometry by considering the surroundings of each pixel. Based on these findings, a statistical approach is used to provide an effective radius retrieval. This statistical effective radius retrieval is focused on the liquid part of convective water clouds, e.g., cumulus mediocris, cumulus congestus, and trade-wind cumulus, which exhibit well-developed cloud sides. Finally, the developed retrieval is tested using known and unknown cloud side scenes to analyze its performance.


1997 ◽  
Author(s):  
Vishwas V. Soman ◽  
William L. Crosson ◽  
Charles A. Laymon

2020 ◽  
Author(s):  
Jiaxin Tian ◽  
Jun Qin ◽  
Kun Yang

<p>Soil moisture plays a key role in land surface processes. Both remote sensing and model simulation have their respective limitations in the estimation of soil moisture on a large spatial scale. Data assimilation is a promising way to merge remote sensing observation and land surface model (LSM), thus having a potential to acquire more accurate soil moisture. Two mainstream assimilation algorithms (variational-based and sequential-based) both need model and observation uncertainties due to their great impact on assimilation results. Besides, as far as land surface models are concerned, model parameters have a significant implication for simulation. However, how to specify these two uncertainties and parameters has been confusing for a long time. A dual-cycle assimilation algorithm, which consists of two cycles, is proposed for addressing the above issue. In the outer cycle, a cost function is constructed and minimized to estimate model parameters and uncertainties in both model and observation. In the inner cycle, a sequentially based filtering method is implemented to estimate soil moisture with the parameters and uncertainties estimated in the outer cycle. For the illustration of the effectiveness of the proposed algorithm, the Advanced Microwave Scanning Radiometer of earth Observing System (AMSR-E) brightness temperatures are assimilated into land surface model with a radiative transfer model as the observation operator in three experimental fields, including Naqu and Ngari on the Tibetan Plateau, and Coordinate Enhanced Observing (CEOP) reference site on Mongolia. The results indicate that the assimilation algorithm can significantly improve soil moisture estimation.</p>


2017 ◽  
Vol 58 ◽  
pp. 10.1-10.21 ◽  
Author(s):  
J. Bühl ◽  
S. Alexander ◽  
S. Crewell ◽  
A. Heymsfield ◽  
H. Kalesse ◽  
...  

Abstract State-of-the-art remote sensing techniques applicable to the investigation of ice formation and evolution are described. Ground-based and spaceborne measurements with lidar, radar, and radiometric techniques are discussed together with a global view on past and ongoing remote sensing measurement campaigns concerned with the study of ice formation and evolution. This chapter has the intention of a literature study and should illustrate the major efforts that are currently taken in the field of remote sensing of atmospheric ice. Since other chapters of this monograph mainly focus on aircraft in situ measurements, special emphasis is put on active remote sensing instruments and synergies between aircraft in situ measurements and passive remote sensing methods. The chapter concentrates on homogeneous and heterogeneous ice formation in the troposphere because this is a major topic of this monograph. Furthermore, methods that deliver direct, process-level information about ice formation are elaborated with a special emphasis on active remote sensing methods. Passive remote sensing methods are also dealt with but only in the context of synergy with aircraft in situ measurements.


Sign in / Sign up

Export Citation Format

Share Document