ENDOCRINE TISSUES

2016 ◽  
pp. 243-298
Keyword(s):  
Biomolecules ◽  
2021 ◽  
Vol 11 (4) ◽  
pp. 553
Author(s):  
Michal Kaleta ◽  
Jana Oklestkova ◽  
Ondřej Novák ◽  
Miroslav Strnad

Neuroactive steroids are a family of all steroid-based compounds, of both natural and synthetic origin, which can affect the nervous system functions. Their biosynthesis occurs directly in the nervous system (so-called neurosteroids) or in peripheral endocrine tissues (hormonal steroids). Steroid hormone levels may fluctuate due to physiological changes during life and various pathological conditions affecting individuals. A deeper understanding of neuroactive steroids’ production, in addition to reliable monitoring of their levels in various biological matrices, may be useful in the prevention, diagnosis, monitoring, and treatment of some neurodegenerative and psychiatric diseases. The aim of this review is to highlight the most relevant methods currently available for analysis of neuroactive steroids, with an emphasis on immunoanalytical methods and gas, or liquid chromatography combined with mass spectrometry.


Author(s):  
A. M. Poma ◽  
D. Bonuccelli ◽  
R. Giannini ◽  
E. Macerola ◽  
P. Vignali ◽  
...  
Keyword(s):  

Neuroscience ◽  
1990 ◽  
Vol 38 (3) ◽  
pp. 743-756 ◽  
Author(s):  
T. Sakurai ◽  
K. Ohmi ◽  
H. Kurokawa ◽  
Y. Nonomura
Keyword(s):  

1998 ◽  
pp. 482-491 ◽  
Author(s):  
W Kiess ◽  
B Gallaher

Apoptosis or programmed cell death is a physiological form of cell death that occurs in embryonic development and during involution of organs. It is characterized by distinct biochemical and morphological changes such as DNA fragmentation, plasma membrane blebbing and cell volume shrinkage. Many hormones, cytokines and growth factors are known to act as general and/or tissue-specific survival factors preventing the onset of apoptosis. In addition, many hormones and growth factors are also capable of inducing or facilitating programmed cell death under physiological or pathological conditions, or both. Steroid hormones are potent regulators of apoptosis in steroid-dependent cell types and tissues such as the mammary gland, the prostate, the ovary and the testis. Growth factors such as epidermal growth factor, nerve growth factor, platelet-derived growth factor (PDGF) and insulin-like growth factor-I act as survival factors and inhibit apoptosis in a number of cell types such as haematopoietic cells, preovulatory follicles, the mammary gland, phaeochromocytoma cells and neurones. Conversely, apoptosis modulates the functioning and the functional integrity of many endocrine glands and of many cells that are capable of synthesizing and secreting hormones. In addition, exaggeration of the primarily natural process of apoptosis has a key role in the pathogenesis of diseases involving endocrine tissues. Most importantly, in autoimmune diseases such as autoimmune thyroid disease and type 1 diabetes mellitus, new data suggest that the immune system itself may not carry the final act of organ injury: rather, the target cells (i.e. thyrocytes and beta cells of the islets) commit suicide through apoptosis. The understanding of how hormones influence programmed cell death and, conversely, of how apoptosis affects endocrine glands, is central to further design strategies to prevent and treat diseases that affect endocrine tissues. This short review summarizes the available evidence showing where and how hormones control apoptosis and where and how programmed cell death exerts modulating effects upon hormonally active tissues.


2016 ◽  
pp. 1153-1153
Author(s):  
Jyotirmay Sharma ◽  
Susan Safley ◽  
Colin Weber
Keyword(s):  

2020 ◽  
pp. MCB.00451-20
Author(s):  
Jennifer M. Gilbert ◽  
Melissa T. Adams ◽  
Nadav Sharon ◽  
Hariharan Jayaraaman ◽  
Barak Blum

The spatial architecture of the islets of Langerhans is vitally important for their correct function, and alterations in islet morphogenesis often result in diabetes mellitus. We have previously reported that Roundabout (Robo) receptors are required for proper islet morphogenesis. As part of the Slit-Robo signaling pathway, Robo receptors function in conjunction with Slit ligands to mediate axon guidance, cell migration, and cell positioning in development. However, the role of Slit ligands in islet morphogenesis has not yet been determined. Here we report that Slit ligands are expressed in overlapping and distinct patterns in both endocrine and non-endocrine tissues in late pancreas development. We show that function of either Slit2 or Slit3, which are predominantly expressed in the pancreatic mesenchyme, is required and sufficient for islet morphogenesis, while Slit1, which is predominantly expressed in the β-cells, is dispensable for islet morphogenesis. We further show that Slit functions as a repellent signal to β-cells. These data suggest that clustering of endocrine cells during islet morphogenesis is guided, at least in part, by repelling Slit2/3 signals from the pancreatic mesenchyme.


Sign in / Sign up

Export Citation Format

Share Document