scholarly journals Analytical Methods for the Determination of Neuroactive Steroids

Biomolecules ◽  
2021 ◽  
Vol 11 (4) ◽  
pp. 553
Author(s):  
Michal Kaleta ◽  
Jana Oklestkova ◽  
Ondřej Novák ◽  
Miroslav Strnad

Neuroactive steroids are a family of all steroid-based compounds, of both natural and synthetic origin, which can affect the nervous system functions. Their biosynthesis occurs directly in the nervous system (so-called neurosteroids) or in peripheral endocrine tissues (hormonal steroids). Steroid hormone levels may fluctuate due to physiological changes during life and various pathological conditions affecting individuals. A deeper understanding of neuroactive steroids’ production, in addition to reliable monitoring of their levels in various biological matrices, may be useful in the prevention, diagnosis, monitoring, and treatment of some neurodegenerative and psychiatric diseases. The aim of this review is to highlight the most relevant methods currently available for analysis of neuroactive steroids, with an emphasis on immunoanalytical methods and gas, or liquid chromatography combined with mass spectrometry.

2020 ◽  
Vol 21 (4) ◽  
pp. 140-144
Author(s):  
M. A. Ahmet’yanov ◽  
◽  
O. A. Kicherova ◽  
L. I. Reikhert ◽  
M. V. Deeva ◽  
...  

The pandemic of the new SARS-CoV2, that started at the beginning of 2020, caused a catastrophic increase in morbidity and mortality in early 2020 and posed a number of challenges for healthcare system. Primarily, this concerns the study of the effect on different organs and systems, that new virus can exhibit. This knowledge further can serve as a key to the development of effective methods for the prevention and treatment of COVID-19 associated pathological conditions. The objectives of this review include the analysis of neurological complications caused by the new coronavirus infection and the determination of the possible mechanisms of the virus’s effect on the human nervous system.


1994 ◽  
Vol 30 (11) ◽  
pp. 255-261 ◽  
Author(s):  
Barth F. Smets ◽  
Timothy G. Ellis ◽  
Stephanie Brau ◽  
Richard W. Sanders ◽  
C. P. Leslie Grady

This study quantified the kinetic differences in microbial communities isolated from completely mixed activated sludge (CMAS) systems that were operated either with or without an aerobic selector preceding the main reactor. A new respirometric method was employed that allowed the determination of biodegradation kinetics from single oxygen consumption curves, thereby minimizing physiological changes to the examined communities during the assay. Results indicated that increased values for Ks and μmax for acetate, phenol, and 4-chlorophenol degradation were measured in the CMAS system operated with a selector. The biomass yields on acetate, phenol, and 4-chlorophenol were very similar in both systems. These findings indicate that the operation of CMAS systems with aerobic selectors may result in the selection for degrading populations with higher Ks and μmax values for both biogenic and xenobiotic organic compounds, and that substrate storage in the selector only partially contributes to increased substrate removal rates.


Author(s):  
Katarzyna Curzytek ◽  
Monika Leśkiewicz

AbstractSince affective disorders are considered to be underlain by the immune system malfunction, an important role in their pathophysiology is assigned to the proinflammatory mediators. Recently, chemokines, the group of chemotactic cytokines, have become a focus for basic and clinical scientists in the context of the development and treatment of brain diseases. Among them, chemokine CCL2 and its main receptor CCR2 have become candidate mediators of abnormal brain-immune system dialogue in depression. Besides the chemotactic activity, the CCL2-CCR2 axis is involved in various neurobiological processes, neurogenesis, neurotransmission, neuroinflammation, neurodegeneration, as well as neuroregeneration. Given the range of immunomodulatory possibilities that the CCL2-CCR2 pair can exert on the nervous system, its proinflammatory properties were initially thought to be a major contributor to the development of depressive disorders. However, further research suggests that the malfunctions of the nervous system are rather associated with impaired homeostatic properties manifested by the CCL2-CCR2 dyad dysfunctions. This review aims to present literature data on the action of the CCL2-CCR2 axis in the central nervous system under physiological and pathological conditions, as well as the contribution of this ligand-receptor system to the processes underlying affective disorders. Additionally, this article draws attention to the importance of the CCL2-CRR2 pathway as a potential pharmacological target with antidepressant potential.


Author(s):  
Federico Fanti ◽  
Eleonora Oliva ◽  
Daniel Tortolani ◽  
Camilla Di Meo ◽  
Marina Fava ◽  
...  
Keyword(s):  

Author(s):  
Isabel Abad-Álvaro ◽  
Diego Leite ◽  
Dorota Bartczak ◽  
Susana Cuello ◽  
Beatriz Gomez-Gomez ◽  
...  

Toxicological studies concerning nanomaterials in complex biological matrices usually require a carefully designed workflow that involves handling, transportation and preparation of a large number of samples without affecting the nanoparticle...


2021 ◽  
Vol 4 (1) ◽  
pp. 11
Author(s):  
Evrysthenis Vartholomatos ◽  
George Vartholomatos ◽  
George A. Alexiou ◽  
Georgios S. Markopoulos

Central nervous system malignancies (CNSMs) are categorized among the most aggressive and deadly types of cancer. The low median survival in patients with CNSMs is partly explained by the objective difficulties of brain surgeries as well as by the acquired chemoresistance of CNSM cells. Flow Cytometry is an analytical technique with the ability to quantify cell phenotype and to categorize cell populations on the basis of their characteristics. In the current review, we summarize the Flow Cytometry methodologies that have been used to study different phenotypic aspects of CNSMs. These include DNA content analysis for the determination of malignancy status and phenotypic characterization, as well as the methodologies used during the development of novel therapeutic agents. We conclude with the historical and current utility of Flow Cytometry in the field, and we propose how we can exploit current and possible future methodologies in the battle against this dreadful type of malignancy.


Sign in / Sign up

Export Citation Format

Share Document