Analysis of the interaction between the Yangtze River and Poyang Lake, China based on Chaos theory

2016 ◽  
pp. 612-616
Author(s):  
Jing Hu ◽  
Zhi-li Wang ◽  
Yong-Jun Lu
2011 ◽  
Vol 10 ◽  
pp. 2256-2264 ◽  
Author(s):  
Junkai Zhao ◽  
Jiufa Li ◽  
Hong Yan ◽  
Lin Zheng ◽  
Zhijun Dai

2016 ◽  
Vol 47 (S1) ◽  
pp. 102-119 ◽  
Author(s):  
Xianghu Li ◽  
Jing Yao ◽  
Yunliang Li ◽  
Qi Zhang ◽  
Chong-Yu Xu

Poyang Lake, one of the most frequently flooded regions in China, connects with the Yangtze River and the five sub-tributaries in the local catchment. The lake's hydrological regime is complicated by a complex hydraulic connection and strong river–lake interaction, especially for the extreme hydrological regime. This study analyzes the relationships between the lake level changes and the flow regimes of Yangtze River and local catchment during the flood season and employs a physically based hydrodynamic model to quantify their relative contributions to the development of floods. The study found that the large catchment runoff and Yangtze River discharge were both significant contributors to flood development but that their contributions were unevenly distributed in time and space. The local catchment imposed more influence during the period of April–May and at the middle parts of the lake, and its influence decreased toward the north and south; in contrast, the most remarkable lake level changes were observed in July–August and at the northern lake for the Yangtze River cases, and these changes reduced from north to south. Moreover, Yangtze River imposed far stronger influences on the lake level changes than the catchment runoff and dominated the duration of floods to a great extent.


2011 ◽  
Vol 21 (3) ◽  
pp. 260-265 ◽  
Author(s):  
PEIHAO CONG ◽  
LEI CAO ◽  
ANTHONY D. FOX ◽  
MARK BARTER ◽  
EILEEN C. REES ◽  
...  

Approximately 75% of the East Asian Flyway Tundra Swan Cygnus columbianus bewickii population winters in the Yangtze River floodplain, China. Historically the species was more widely distributed throughout the floodplain but now most of the population is confined to five wetlands in Anhui Province and to Poyang Lake in Jiangxi Province, where the majority (up to 113,000 birds) occur. Within-winter counts suggest that swans congregate at Poyang Lake before dispersing to other sites later in the winter. Counts show large between-year fluctuations, but suggest declines at Shengjin and Fengsha Lakes (both in Anhui) during the last five years. Declines at Shengjin Lake are likely due to decreases in submerged vegetation (particularly tuber-producing Vallisneria, a major food item) perhaps linked to eutrophication. Range contractions throughout the floodplain may also be linked to reductions in submerged vegetation coverage elsewhere. Changes in water quality and lake hydrology post-Three Gorges Dam may have adversely affected submerged vegetation productivity. Key information needs for the effective implementation of conservation measures for Tundra Swans include: (1) annual surveys of all major wintering sites throughout each winter to establish the importance of different sites during the non-breeding period; (2) more information on swan diets at important sites; and (3) an assessment of adverse effects of water quality and lake water levels post-Three Gorges Dam on submerged vegetation productivity at Poyang Lake and other important sites.


2011 ◽  
Vol 130 (4) ◽  
pp. 2460-2460
Author(s):  
Satoko Kimura ◽  
Tomonari Akamatsu ◽  
Songhai Li ◽  
Lijun Dong ◽  
Kexiong Wang ◽  
...  

2020 ◽  
Author(s):  
Hongqi Wang

<p>How to balance ecosystem health and economic development is essential to study sustainability of urban ecosystems. Many methods for assessing urban sustainability have been developed, among which ecological footprint analysis (EFA) has been widely applied as a promising policy and planning tool. This paper proposed a modified EFA with the local ecological footprint being justified by adapting equivalence and yield factors in context of net primary productivity (NPP) from the Miami model. Biodiversity reserves were also incorporated using GIS technology and synthetic assessment of attributes to reflect various eco- logical functions. In addition, ecological footprint deficit (EFD), implying that the productive land cannot sustain current levels of consumption for a given population, was used to reveal the extent of ecological debt, while the ecological footprint variation index (EFVI) was proposed to describe the tradeoffs between real consumption and the carrying capacity of a specific region. A case study of urban areas in the middle stream of the Yangtze River Basin showed that the per capita EFD of the Wanjiang urban belt, central Poyang Lake urban agglomeration, suburban Poyang Lake urban agglomeration, Wuhan megalopolis, Jingmen–Jingzhou–Yichang urban agglomeration, central Changsha–Zhuzou–Xiangtan urban agglomeration, and suburban Changsha–Zhuzou–Xiangtan urban agglomeration increased by 64.83%, 178.05%, 214.82%, 59.08%, 71.68%, 100.62%, and 91.06% between 2000 and 2010, respectively. The local ecological footprint pressure index (EFPI) was classified into five levels. The Poyang lake urban agglomeration was found to be in a slight deficit, while all others were in a severe deficit in 2010. Calculations of EFVI also revealed that the booming urbanization occurred at great cost to the deteriorating ecosystems between 2000 and 2010. Accordingly, relevant influence factors were investigated using a forward stepwise regression method, which indicated that ecological deficit was positively correlated with GDP, population density, and emission of industrial waste, but negatively correlated with the tertiary industry.</p>


2018 ◽  
Vol 28 (8) ◽  
pp. 1059-1071 ◽  
Author(s):  
Mofei Chen ◽  
Jinyun Deng ◽  
Shaoying Fan ◽  
Yitian Li

2016 ◽  
Vol 39 (6) ◽  
pp. 1762-1768 ◽  
Author(s):  
Tao Jiang ◽  
Hongbo Liu ◽  
Mingjie Lu ◽  
Tingting Chen ◽  
Jian Yang

2017 ◽  
Vol 76 (1) ◽  
pp. 1-14 ◽  
Author(s):  
Huai Chen ◽  
Lijun Zhu ◽  
Jianzhong Wang ◽  
Hongxia Fan ◽  
Zhihuan Wang

This study focuses on detecting trends in annual runoff volume and sediment load in the Yangtze river-lake system. Times series of annual runoff volume and sediment load at 19 hydrological gauging stations for the period 1956–2013 were collected. Based on the Mann-Kendall test at the 1% significance level, annual sediment loads in the Yangtze River, the Dongting Lake and the Poyang Lake were detected with significantly descending trends. The power spectrum estimation indicated predominant oscillations with periods of 8 and 20 years are embedded in the runoff volume series, probably related to the El Niño Southern Oscillation (2–7 years) and Pacific Decadal Oscillation (20–30 years). Based on dominant components (capturing more than roughly 90% total energy) extracted by the proper orthogonal decomposition method, total change ratios of runoff volume and sediment load during the last 58 years were evaluated. For sediment load, the mean CRT value in the Yangtze River is about −65%, and those in the Dongting Lake and the Poyang Lake are −92.2% and −87.9% respectively. Particularly, the CRT value of the sediment load in the channel inflow of the Dongting Lake is even −99.7%. The Three Gorges Dam has intercepted a large amount of sediment load and decreased the sediment load downstream.


Sign in / Sign up

Export Citation Format

Share Document