Structural health monitoring of the Gaertnerplatz bridge over the Fulda river in Kassel considering environmental conditions

Author(s):  
M Link ◽  
M Weiland ◽  
E Fehling
2013 ◽  
Vol 778 ◽  
pp. 757-764 ◽  
Author(s):  
Francesca Lanata

Structural design, regardless of construction material, is based mainly on deterministic codes that partially take into account the real structural response under service and environmental conditions. This approach can lead to overdesigned (and expensive) structures. The differences between the designed and the real behaviors are usually due to service loads not taken into account during the design or simply to the natural degradation of materials properties with time. This is particularly true for wood, which is strongly influenced by service and environmental conditions. Structural Health Monitoring can improve the knowledge of timber structures under service conditions, provide information on material aging and follow the degradation of the overall building performance with time.A long-term monitoring control has been planned on a three-floor structure composed by wooden trusses and composite concrete-wood slabs. The structure is located in Nantes, France, and it is the new extension to the Wood Science and Technology Academy (ESB). The main purpose of the monitoring is to follow the long-term structural response from a mechanical and energetic point of view, particularly during the first few service years. Both static and dynamic behavior is being followed through strain gages and accelerometers. The measurements will be further put into relation with the environmental changes, temperature and humidity in particular, and with the operational charges with the aim to improve the comprehension of long-term performances of wooden structures under service. The goal is to propose new improved and optimized methods to make timber constructions more efficient compared to other construction materials (masonry, concrete, steel).The paper will mainly focus on the criteria used to design the architecture of the monitoring system, the parameters to measure and the sensors to install. The first analyses of the measurements will be presented at the conference to have a feedback on the performance of the installed sensors and to start to define a general protocol for the Structural Health Monitoring of such type of timber structures.


2017 ◽  
Vol 17 (2) ◽  
pp. 410-419 ◽  
Author(s):  
Patrik Fröjd ◽  
Peter Ulriksen

Diffuse ultrasonic wave measurements used in structural health monitoring applications can detect damage in concrete. However, the accuracy is very susceptible to environmental variations. In this study, a large concrete floor slab was monitored using diffuse wave fields that were generated by continuous-wave transmissions between ultrasonic transducers. The slab was monitored for several weeks while being subjected to changes in environmental conditions. Subsequently, it was damaged using impact hits, resulting in centimeter-scale cracking. The variations caused by the environment masked the effects of the damage in the measurements. To address this issue, the Mahalanobis distance was used to distinguish between the influence of the damage and the influence of the environmental variations. The Mahalanobis model uses amplitude and phase measurements of continuous waves at a set of different frequencies as inputs. A moving window approach was applied to the baseline data set to account for slow trends. This study shows that this technique greatly suppresses most of the variations caused by environmental conditions. All damage events in our data set have been detected.


2013 ◽  
Vol 569-570 ◽  
pp. 1218-1225
Author(s):  
Andreas Tjirkallis ◽  
Andreas Kyprianou ◽  
George Vessiaris

A novel structural health monitoring system to detect damages in structures under varying operational and environmental conditions is presented in this paper. A noncontact, full-field measurement using a high speed camera offers a convenient and less expensive measurement procedure, enabling the measuring of responses in elevated temperatures and in conditions where contact sensors are unable to be used. In this paper, a combination of Decay lines of the Wavelet Transform Modulus Maxima (WTMM) and Holder Exponent (HE) are used to distinguish changes on the time response of a vibrating structure due to the operational and environmental variations to changes due to the presence of damage, thus minimising the possibility of false alarm. The proposed methodology is demonstrated using a 3-DOF system under conditions of varying and constant temperatures with the presence of damage, as well as using an experimental setup of a cantilever beam under intact and damaged conditions.


2020 ◽  
Vol 2 (1) ◽  
pp. 94
Author(s):  
Matteo Torzoni ◽  
Luca Rosafalco ◽  
Andrea Manzoni

Nowadays, the aging, deterioration, and failure of civil structures are challenges of paramount importance, increasingly motivating the search of advanced Structural Health Monitoring (SHM) tools. In this work, we propose a SHM strategy for online structural damage detection and localization, combining Deep Learning (DL) and Model-Order Reduction (MOR). The developed data-based procedure is driven by the analysis of vibration and temperature recordings, shaped as multivariate time series and collected on the fly through pervasive sensor networks. Damage detection and localization are treated as a supervised classification task considering a finite number of predefined damage scenarios. During a preliminary offline phase, for each damage scenario, a collection of synthetic structural responses and temperature distributions, is numerically generated through a physics-based model. Several loading and thermal conditions are considered, thanks to a suitable parametrization of the problem, which controls the dependency of the model on operational and environmental conditions. Because of the huge amount of model evaluations, MOR techniques are employed in order to relieve the computational burden that is associated to the dataset construction. Finally, a deep neural network, featuring a stack of convolutional layers, is trained by assimilating both vibrational and thermal data. During the online phase, the trained DL network processes new incoming recordings in order to classify the actual state of the structure, thus providing information regarding the presence and localization of the damage, if any. Numerical performances of the proposed approach are assessed on the monitoring of a two-storey frame under low intensity seismic excitation.


Sign in / Sign up

Export Citation Format

Share Document