Optimization of SVM-Based Hand Gesture Recognition System Using Particle Swarm Optimization and Plant Growth Simulation Algorithm

2019 ◽  
pp. 185-200
Author(s):  
K. Martin Sagayam ◽  
Sankirthana Suresh ◽  
D. Jude Hemanth ◽  
Lawrence Henessey ◽  
Chiung Ching Ho
Sensors ◽  
2021 ◽  
Vol 21 (7) ◽  
pp. 2540
Author(s):  
Zhipeng Yu ◽  
Jianghai Zhao ◽  
Yucheng Wang ◽  
Linglong He ◽  
Shaonan Wang

In recent years, surface electromyography (sEMG)-based human–computer interaction has been developed to improve the quality of life for people. Gesture recognition based on the instantaneous values of sEMG has the advantages of accurate prediction and low latency. However, the low generalization ability of the hand gesture recognition method limits its application to new subjects and new hand gestures, and brings a heavy training burden. For this reason, based on a convolutional neural network, a transfer learning (TL) strategy for instantaneous gesture recognition is proposed to improve the generalization performance of the target network. CapgMyo and NinaPro DB1 are used to evaluate the validity of our proposed strategy. Compared with the non-transfer learning (non-TL) strategy, our proposed strategy improves the average accuracy of new subject and new gesture recognition by 18.7% and 8.74%, respectively, when up to three repeated gestures are employed. The TL strategy reduces the training time by a factor of three. Experiments verify the transferability of spatial features and the validity of the proposed strategy in improving the recognition accuracy of new subjects and new gestures, and reducing the training burden. The proposed TL strategy provides an effective way of improving the generalization ability of the gesture recognition system.


2012 ◽  
Vol 6 ◽  
pp. 98-107 ◽  
Author(s):  
Amit Gupta ◽  
Vijay Kumar Sehrawat ◽  
Mamta Khosla

Author(s):  
Deblina Bhattacharjee ◽  
Anand Paul ◽  
Won-Hwa Hong ◽  
HyunCheol Seo ◽  
Karthik S.

The use of unmanned aerial vehicle (UAV) during emergency response of a disaster has been widespread in recent years and the terrain images captured by the cameras on board these vehicles are significant sources of information for such disaster monitoring operations. Thus, analyzing such images are important for assessing the terrain of interest during such emergency response operations. Further, these UAVs are mainly used in disaster monitoring systems for the automated deployment of sensor nodes in real time. Therefore, deploying and localizing the wireless sensor nodes optimally, only in the regions of interest that are identified by segmenting the images captured by UAVs, hold paramount significance thereby effecting their performance. In this paper, the highly effective nature-inspired Plant Growth Simulation Algorithm (PGSA) has been applied for the segmentation of such terrestrial images and also for the localization of the deployed sensor nodes. The problem is formulated as a multi-dimensional optimization problem and PGSA has been used to solve it. Furthermore, the proposed method has been compared to other existing evolutionary methods and simulation results show that PGSA gives better performance with respect to both speed and accuracy unlike other techniques in literature.


Sign in / Sign up

Export Citation Format

Share Document