plant growth simulation algorithm
Recently Published Documents


TOTAL DOCUMENTS

47
(FIVE YEARS 6)

H-INDEX

9
(FIVE YEARS 0)

2021 ◽  
pp. 1-19
Author(s):  
Wei Liu ◽  
Yuhong Wang

In view of the present situation that most aggregation methods of fuzzy preference information are extended or mixed by classical aggregation operators, which leads to the aggregation accuracy is not high. The purpose of this paper is to develop a novel method for spatial aggregation of fuzzy preference information. Thus we map the fuzzy preference information to a set of three-dimensional coordinate and construct the spatial aggregation model based on Steiner-Weber point. Then, the plant growth simulation algorithm (PGSA) algorithm is used to find the spatial aggregation point. According to the comparison and analysis of the numerical example, the aggregation matrix established by our method is closer to the group preference matrices. Therefore, the optimal aggregation point obtained by using the optimal aggregation method based on spatial Steiner-Weber point can best represent the comprehensive opinion of the decision makers.


Author(s):  
Deblina Bhattacharjee ◽  
Anand Paul ◽  
Won-Hwa Hong ◽  
HyunCheol Seo ◽  
Karthik S.

The use of unmanned aerial vehicle (UAV) during emergency response of a disaster has been widespread in recent years and the terrain images captured by the cameras on board these vehicles are significant sources of information for such disaster monitoring operations. Thus, analyzing such images are important for assessing the terrain of interest during such emergency response operations. Further, these UAVs are mainly used in disaster monitoring systems for the automated deployment of sensor nodes in real time. Therefore, deploying and localizing the wireless sensor nodes optimally, only in the regions of interest that are identified by segmenting the images captured by UAVs, hold paramount significance thereby effecting their performance. In this paper, the highly effective nature-inspired Plant Growth Simulation Algorithm (PGSA) has been applied for the segmentation of such terrestrial images and also for the localization of the deployed sensor nodes. The problem is formulated as a multi-dimensional optimization problem and PGSA has been used to solve it. Furthermore, the proposed method has been compared to other existing evolutionary methods and simulation results show that PGSA gives better performance with respect to both speed and accuracy unlike other techniques in literature.


2017 ◽  
Vol 2017 ◽  
pp. 1-14
Author(s):  
Xuping Wang ◽  
Jian Qiu ◽  
Tong Li ◽  
Junhu Ruan

As product returns are eroding Internet retail profit, managers are continuously striving for a more scientific and efficient network layout to arrange the returned goods. Based on a three-echelon product returns network, this paper proposes a mixed integer nonlinear programming model with the aim of minimizing total cost and creates a high-efficiency method, the Modified Plant Growth Simulation Algorithm (MPGSA), to optimize the problem. The algorithm handles the objective function and the constraints, respectively, requiring no extrinsic parameters and provides a guiding search direction generated from the assessment of the current solving state. Above all, MPGSA keeps a great balance between concentrating growth opportunities on the outstanding growth points and expanding the searching scope. The improvements give the revaluating and reselecting chances to all growth points in each iteration, enhancing the optimization efficiency. A case study illustrates the effectiveness and robustness of MPGSA compared to its original version, Plant Growth Simulation Algorithm, and other approaches, namely, Genetic Algorithm, Artificial Immune System, and Simulated Annealing.


Sign in / Sign up

Export Citation Format

Share Document