Enzymes—Kinetics of Enzymatic Reactions

2019 ◽  
pp. 203-211
Author(s):  
Jean-Louis Burgot
2021 ◽  
Vol 2021 (1) ◽  
Author(s):  
Khanitin Muangchoo-in ◽  
Kanokwan Sitthithakerngkiet ◽  
Parinya Sa-Ngiamsunthorn ◽  
Poom Kumam

AbstractIn this paper, the authors present a strategy based on fixed point iterative methods to solve a nonlinear dynamical problem in a form of Green’s function with boundary value problems. First, the authors construct the sequence named Green’s normal-S iteration to show that the sequence converges strongly to a fixed point, this sequence was constructed based on the kinetics of the amperometric enzyme problem. Finally, the authors show numerical examples to analyze the solution of that problem.


2018 ◽  
Vol 39 (10) ◽  
pp. 1454-1461 ◽  
Author(s):  
V. Yu. Novikov ◽  
S. R. Derkach ◽  
Yu. A. Kuchina ◽  
A. Yu. Shironina ◽  
V. A. Mukhin

1998 ◽  
Vol 111 (1) ◽  
pp. 39-51 ◽  
Author(s):  
Peter D. Calvert ◽  
Theresa W. Ho ◽  
Yvette M. LeFebvre ◽  
Vadim Y. Arshavsky

Light adaptation in vertebrate photoreceptors is thought to be mediated through a number of biochemical feedback reactions that reduce the sensitivity of the photoreceptor and accelerate the kinetics of the photoresponse. Ca2+ plays a major role in this process by regulating several components of the phototransduction cascade. Guanylate cyclase and rhodopsin kinase are suggested to be the major sites regulated by Ca2+. Recently, it was proposed that cGMP may be another messenger of light adaptation since it is able to regulate the rate of transducin GTPase and thus the lifetime of activated cGMP phosphodiesterase. Here we report measurements of the rates at which the changes in Ca2+ and cGMP are followed by the changes in the rates of corresponding enzymatic reactions in frog rod outer segments. Our data indicate that there is a temporal hierarchy among reactions that underlie light adaptation. Guanylate cyclase activity and rhodopsin phosphorylation respond to changes in Ca2+ very rapidly, on a subsecond time scale. This enables them to accelerate the falling phase of the flash response and to modulate flash sensitivity during continuous illumination. To the contrary, the acceleration of transducin GTPase, even after significant reduction in cGMP, occurs over several tens of seconds. It is substantially delayed by the slow dissociation of cGMP from the noncatalytic sites for cGMP binding located on cGMP phosphodiesterase. Therefore, cGMP-dependent regulation of transducin GTPase is likely to occur only during prolonged bright illumination.


2018 ◽  
Author(s):  
Daniel R. Weilandt ◽  
Vassily Hatzimanikatis

AbstractMany computational models for analyzing and predicting cell physiology rely onin vitrodata, collected in dilute and cleanly controlled buffer solutions. However, this can mislead models because about 40% of the intracellular volume is occupied by a dense mixture of proteins, lipids, polysaccharides, RNA, and DNA. These intracellular macromolecules interact with enzymes and their reactants and affect the kinetics of biochemical reactions, makingin vivoreactions considerably more complex than thein vitrodata indicates. In this work, we present a new type of kinetics that captures and quantifies the effect of volume exclusion and any other spatial phenomena on the kinetics of elementary reactions. We further developed a framework that allows for the efficient parameterization of this type of kinetics using particle simulations. Our formulation, entitled GEneralized Elementary Kinetics (GEEK), can be used to analyze and predict the effect of intracellular crowding on enzymatic reactions and was herein applied to investigate the influence of crowding on phosphoglycerate mutase inEscherichia coli, which exhibits prototypical reversible Michaelis-Menten kinetics. Current research indicates that many enzymes are reaction limited and not diffusion limited, and our results suggest that the influence of fractal diffusion is minimal for these reaction-limited enzymes. Instead, increased association rates and decreased dissociation rates lead to a strong decrease in the effective maximal velocitiesVmaxand the effective Michaelis-Menten constantsKMunder physiologically relevant volume occupancies. Finally, the effects of crowding in the context of a linear pathway were explored, with the finding that crowding can have a redistributing effect, relative to ideal conditions, on the effective flux responses in the case of two-fold enzyme overexpression. We suggest that the presented framework in combination with detailed kinetics models will improve our understanding of enzyme reaction networks under non-ideal conditions.


2012 ◽  
Vol 53 ◽  
Author(s):  
Liana Stonkienė ◽  
Feliksas Ivanauskas

This paper presents a one-dimensional-in-space mathematical model of the amperometric biosensors with substrate and product degeneration. The model is based on diffusion equations containing a non-linear term related to Michaelis-Menten kinetics of the enzymatic reactions. It was analyzed effect of substrate and product degeneration for the biosensors response.


Sign in / Sign up

Export Citation Format

Share Document