scholarly journals Particle-based simulation reveals macromolecular crowding effects on the Michaelis-Menten mechanism

2018 ◽  
Author(s):  
Daniel R. Weilandt ◽  
Vassily Hatzimanikatis

AbstractMany computational models for analyzing and predicting cell physiology rely onin vitrodata, collected in dilute and cleanly controlled buffer solutions. However, this can mislead models because about 40% of the intracellular volume is occupied by a dense mixture of proteins, lipids, polysaccharides, RNA, and DNA. These intracellular macromolecules interact with enzymes and their reactants and affect the kinetics of biochemical reactions, makingin vivoreactions considerably more complex than thein vitrodata indicates. In this work, we present a new type of kinetics that captures and quantifies the effect of volume exclusion and any other spatial phenomena on the kinetics of elementary reactions. We further developed a framework that allows for the efficient parameterization of this type of kinetics using particle simulations. Our formulation, entitled GEneralized Elementary Kinetics (GEEK), can be used to analyze and predict the effect of intracellular crowding on enzymatic reactions and was herein applied to investigate the influence of crowding on phosphoglycerate mutase inEscherichia coli, which exhibits prototypical reversible Michaelis-Menten kinetics. Current research indicates that many enzymes are reaction limited and not diffusion limited, and our results suggest that the influence of fractal diffusion is minimal for these reaction-limited enzymes. Instead, increased association rates and decreased dissociation rates lead to a strong decrease in the effective maximal velocitiesVmaxand the effective Michaelis-Menten constantsKMunder physiologically relevant volume occupancies. Finally, the effects of crowding in the context of a linear pathway were explored, with the finding that crowding can have a redistributing effect, relative to ideal conditions, on the effective flux responses in the case of two-fold enzyme overexpression. We suggest that the presented framework in combination with detailed kinetics models will improve our understanding of enzyme reaction networks under non-ideal conditions.

Author(s):  
Beverly E. Maleeff ◽  
Timothy K. Hart ◽  
Stephen J. Wood ◽  
Ronald Wetzel

Alzheimer's disease is characterized post-mortem in part by abnormal extracellular neuritic plaques found in brain tissue. There appears to be a correlation between the severity of Alzheimer's dementia in vivo and the number of plaques found in particular areas of the brain. These plaques are known to be the deposition sites of fibrils of the protein β-amyloid. It is thought that if the assembly of these plaques could be inhibited, the severity of the disease would be decreased. The peptide fragment Aβ, a precursor of the p-amyloid protein, has a 40 amino acid sequence, and has been shown to be toxic to neuronal cells in culture after an aging process of several days. This toxicity corresponds to the kinetics of in vitro amyloid fibril formation. In this study, we report the biochemical and ultrastructural effects of pH and the inhibitory agent hexadecyl-N-methylpiperidinium (HMP) bromide, one of a class of ionic micellar detergents known to be capable of solubilizing hydrophobic peptides, on the in vitro assembly of the peptide fragment Aβ.


1977 ◽  
Vol 16 (04) ◽  
pp. 157-162 ◽  
Author(s):  
C. Schümichen ◽  
B. Mackenbrock ◽  
G. Hoffmann

SummaryThe bone-seeking 99mTc-Sn-pyrophosphate compound (compound A) was diluted both in vitro and in vivo and proved to be unstable both in vitro and in vivo. However, stability was much better in vivo than in vitro and thus the in vitro stability of compound A after dilution in various mediums could be followed up by a consecutive evaluation of the in vivo distribution in the rat. After dilution in neutral normal saline compound A is metastable and after a short half-life it is transformed into the other 99mTc-Sn-pyrophosphate compound A is metastable and after a short half-life in bone but in the kidneys. After dilution in normal saline of low pH and in buffering solutions the stability of compound A is increased. In human plasma compound A is relatively stable but not in plasma water. When compound B is formed in a buffering solution, uptake in the kidneys and excretion in urine is lowered and blood concentration increased.It is assumed that the association of protons to compound A will increase its stability at low concentrations while that to compound B will lead to a strong protein bond in plasma. It is concluded that compound A will not be stable in vivo because of a lack of stability in the extravascular space, and that the protein bond in plasma will be a measure of its in vivo stability.


1981 ◽  
Vol 45 (03) ◽  
pp. 285-289 ◽  
Author(s):  
J P Allain ◽  
A Gaillandre ◽  
D Frommel

SummaryFactor VIII complex and its interaction with antibodies to factor VIII have been studied in 17 non-haemophilic patients with factor VIII inhibitor. Low VIII:C and high VIIIR.Ag levels were found in all patients. VIII:WF levels were 50% of those of VTIIRrAg, possibly related to an increase of poorly aggregated and electrophoretically fast moving VIIIR:Ag oligomers.Antibody function has been characterized by kinetics of VIII :C inactivation, saturability by normal plasma and the slope of the affinity curve. Two major patterns were observed:1) Antibodies from 6 patients behaved similarly to those from haemophiliacs by showing second order inhibition kinetics, easy saturability and steep affinity slope (> 1).2) Antibodies from other patients, usually with lower titres, inactivated VIII :C according to complex order kinetics, were not saturable, and had a less steep affinity slope (< 0.7). In native plasma, or after mixing with factor VIII concentrate, antibodies of the second group did not form immune complexes with the whole factor VIII molecular complex. However, dissociation procedures did release some antibodies from apparently low molecular weight complexes formed in vivo or in vitro. For appropriate management of non-haemophilic patients with factor VIII inhibitor, it is important to determine the functional properties of their antibodies to factor VIII.


2010 ◽  
Vol 235 (4) ◽  
pp. 411-423 ◽  
Author(s):  
Katarzyna A Rejniak ◽  
Lisa J McCawley

In its simplest description, a tumor is comprised of an expanding population of transformed cells supported by a surrounding microenvironment termed the tumor stroma. The tumor microcroenvironment has a very complex composition, including multiple types of stromal cells, a dense network of various extracellular matrix (ECM) fibers interpenetrated by the interstitial fluid and gradients of several chemical species that either are dissolved in the fluid or are bound to the ECM structure. In order to study experimentally such complex interactions between multiple players, cancer is dissected and considered at different scales of complexity, such as protein interactions, biochemical pathways, cellular functions or whole organism studies. However, the integration of information acquired from these studies into a common description is as difficult as the disease itself. Computational models of cancer can provide cancer researchers with invaluable tools that are capable of integrating the complexity into organizing principles as well as suggesting testable hypotheses. We will focus in this Minireview on mathematical models in which the whole cell is a main modeling unit. We will present a current stage of such cell-focused mathematical modeling incorporating different stromal components and their interactions with growing tumors, and discuss what modeling approaches can be undertaken to complement the in vivo and in vitro experimentation.


2013 ◽  
Vol 110 (5) ◽  
pp. 1227-1245 ◽  
Author(s):  
Arij Daou ◽  
Matthew T. Ross ◽  
Frank Johnson ◽  
Richard L. Hyson ◽  
Richard Bertram

The nucleus HVC (proper name) within the avian analog of mammal premotor cortex produces stereotyped instructions through the motor pathway leading to precise, learned vocalization by songbirds. Electrophysiological characterization of component HVC neurons is an important requirement in building a model to understand HVC function. The HVC contains three neural populations: neurons that project to the RA (robust nucleus of arcopallium), neurons that project to Area X (of the avian basal ganglia), and interneurons. These three populations are interconnected with specific patterns of excitatory and inhibitory connectivity, and they fire with characteristic patterns both in vivo and in vitro. We performed whole cell current-clamp recordings on HVC neurons within brain slices to examine their intrinsic firing properties and determine which ionic currents are responsible for their characteristic firing patterns. We also developed conductance-based models for the different neurons and calibrated the models using data from our brain slice work. These models were then used to generate predictions about the makeup of the ionic currents that are responsible for the different responses to stimuli. These predictions were then tested and verified in the slice using pharmacological manipulations. The model and the slice work highlight roles of a hyperpolarization-activated inward current ( Ih), a low-threshold T-type Ca2+ current ( ICa-T), an A-type K+ current ( IA), a Ca2+-activated K+ current ( ISK), and a Na+-dependent K+ current ( IKNa) in driving the characteristic neural patterns observed in the three HVC neuronal populations. The result is an improved characterization of the HVC neurons responsible for song production in the songbird.


1992 ◽  
Vol 21 (1-3) ◽  
pp. 213
Author(s):  
H. Berger ◽  
K. Fechner ◽  
N. Heinrich ◽  
D. Lorenz ◽  
E. Albrecht ◽  
...  
Keyword(s):  

1932 ◽  
Vol 16 (2) ◽  
pp. 233-242 ◽  
Author(s):  
B. G. Wilkes ◽  
Elizabeth T. Palmer

1. The pH-activity relationship of invertase has been studied in vivo and in vitro under identical external environmental conditions. 2. The effect of changing (H+) upon the sucroclastic activity of living cells of S. cerevisiae and of invertase solutions obtained therefrom has been found, within experimental error, to be identical. 3. The region of living yeast cells in which invertase exerts its physiological activity changes its pH freely and to the same extent as that of the suspending medium. It is suggested that this may indicate that this intracellular enzyme may perform its work somewhere in the outer region of the cell. 4. In using live cells containing maltase, no evidence of increased sucroclastic activity around pH 6.9, due to the action of Weidenhagen's α-glucosidase (maltase), was found.


2005 ◽  
Vol 99 (4) ◽  
pp. 1582-1591 ◽  
Author(s):  
Donna R. Hill ◽  
Marianne E. Brunner ◽  
Deborah C. Schmitz ◽  
Catherine C. Davis ◽  
Janine A. Flood ◽  
...  

Previous in vitro and in vivo animal studies showed that O2and CO2concentrations can affect virulence of pathogenic bacteria such as Staphylococcus aureus. The objective of this work was to measure O2and CO2levels in the vaginal environment during tampon wear using newly available sensor technology. Measurements by two vaginal sensors showed a decrease in vaginal O2levels after tampon insertion. These decreases were independent of the type of tampons used and the time of measurement (mid-cycle or during menstruation). These results are not in agreement with a previous study that concluded that oxygenation of the vaginal environment during tampon use occurred via delivery of a bolus of O2during the insertion process. Our measurements of gas levels in menses showed the presence of both O2and CO2in menses. The tampons inserted into the vagina contained O2and CO2levels consistent with atmospheric conditions. Over time during tampon use, levels of O2in the tampon decreased and levels of CO2increased. Tampon absorbent capacity, menses loading, and wear time influenced the kinetics of these changes. Colonization with S. aureus had no effect on the gas profiles during menstruation. Taken collectively, these findings have important implications on the current understanding of gaseous changes in the vaginal environment during menstruation and the potential role(s) they may play in affecting bacterial virulence factor production.


1996 ◽  
Vol 270 (3) ◽  
pp. G487-G491 ◽  
Author(s):  
A. Strocchi ◽  
G. Corazza ◽  
J. Furne ◽  
C. Fine ◽  
A. Di Sario ◽  
...  

Normal intestinal absorption of nutrients requires efficient luminal mixing to deliver solute to the brush border. Lacking such mixing, the buildup of thick unstirred layers over the mucosa markedly retards absorption of rapidly transported compounds. Using a technique based on the kinetics of maltose hydrolysis, we measured the unstirred layer thickness of the jejunum of normal subjects and patients with celiac disease, as well as that of the normal rat. The jejunum of humans and rats was perfused with varying maltose concentrations, and the apparent Michaelis constant (Km) and maximal velocity (Vmax) of maltose hydrolysis were determined from double-reciprocal plots. The true Km of intestinal maltase was determined on mucosal biopsies. Unstirred layer thickness was calculated from the in vivo Vmax and apparent Km and the in vitro Km of maltase. The average unstirred layer thickness of 11 celiac patients (170 micron) was seven times greater than that of 3 controls (25 micron). The unstirred layer of each celiac exceeded that of the controls. A variety of factors could account for the less efficient luminal stirring observed in celiacs. Although speculative, villous contractility could be an important stirring mechanism that would be absent in celiacs with villous atrophy. This speculation was supported by the finding of a relatively thick unstirred layer (mean: 106 micron) in rats, an animal that lacks villous contractility. Because any increase in unstirred layer slows transport of rapidly absorbed compounds, poor stirring appears to represent a previously unrecognized defect that could contribute to malabsorption in celiac disease and, perhaps, in other intestinal disorders.


1989 ◽  
Vol 37 (9) ◽  
pp. 1449-1454 ◽  
Author(s):  
J S Meyer ◽  
J Nauert ◽  
S Koehm ◽  
J Hughes

We labeled active S-phase cells in primary breast carcinomas with a modified 5-bromo-2'-deoxyuridine (BrdU) procedure using a silver-enhanced colloidal gold visualization step. Separate samples of 29 tumors were labeled with BrdU or tritiated thymidine ([3H]-dThd), and the labeling indices (LI) from the two methods were equivalent (Spearman's correlation coefficient = 0.96). Three breast carcinomas were incubated in various mixes of both BrdU and [3H]-dThd and developed sequentially for each. Paired photomicrographs showed that the same nuclei were labeled by either precursor. The in vitro method yielded LIs similar to those reported after in vivo pulse BrdU labeling for tumors of the central nervous system. The BrdU LI correlated significantly (r = 0.76, p less than 0.001) with % S-phase by DNA flow cytometry in 33 breast carcinomas. The BrdU labeling method is simpler and more rapid than the [3H]-dThd procedure (1-2 days for completion for the former, 7-10 days for the latter), and it provides an equivalent measurement of proliferative index.


Sign in / Sign up

Export Citation Format

Share Document