endotoxin tolerance
Recently Published Documents


TOTAL DOCUMENTS

488
(FIVE YEARS 45)

H-INDEX

59
(FIVE YEARS 4)

2021 ◽  
Vol 12 ◽  
Author(s):  
Octavio Morante-Palacios ◽  
Clara Lorente-Sorolla ◽  
Laura Ciudad ◽  
Josep Calafell-Segura ◽  
Antonio Garcia-Gomez ◽  
...  

Microbial challenges, such as widespread bacterial infection in sepsis, induce endotoxin tolerance, a state of hyporesponsiveness to subsequent infections. The participation of DNA methylation in this process is poorly known. In this study, we perform integrated analysis of DNA methylation and transcriptional changes following in vitro exposure to gram-negative bacterial lipopolysaccharide, together with analysis of ex vivo monocytes from septic patients. We identify TET2-mediated demethylation and transcriptional activation of inflammation-related genes that is specific to toll-like receptor stimulation. Changes also involve phosphorylation of STAT1, STAT3 and STAT5, elements of the JAK2 pathway. JAK2 pathway inhibition impairs the activation of tolerized genes on the first encounter with lipopolysaccharide. We then confirm the implication of the JAK2-STAT pathway in the aberrant DNA methylome of patients with sepsis caused by gram-negative bacteria. Finally, JAK2 inhibition in monocytes partially recapitulates the expression changes produced in the immunosuppressive cellular state acquired by monocytes from gram-negative sepsis, as described by single cell-RNA-sequencing. Our study evidences both the crucial role the JAK2-STAT pathway in epigenetic regulation and initial response of the tolerized genes to gram-negative bacterial endotoxins and provides a pharmacological target to prevent exacerbated responses.


2021 ◽  
Vol 12 ◽  
Author(s):  
Shan Cao ◽  
Anne Schnelzer ◽  
Nicole Hannemann ◽  
Georg Schett ◽  
Didier Soulat ◽  
...  

Sepsis is a life-threatening condition characterized by excessive inflammation in its early phase. This is followed by an aberrant resolution phase associated to a prolonged period of immune suppression that can ultimately lead to multiple organ dysfunctions. This immunosuppression can be mediated by the functional reprogramming of gene transcription in monocytes/macrophages in response to prolonged lipopolysaccharide (LPS) exposure. Surprisingly, there is no report on the role of AP-1 transcription factors in this reprogramming process. Herein, we used the endotoxin tolerance model on murine bone marrow-derived macrophages in which tolerant cells stimulated twice with LPS were compared to naïve cells stimulated once. Out of all AP-1 transcription factors tested, Fosl1 gene stood out because of its unique regulation in tolerized cells. Moreover, we could correlate FRA-1 expression to the expression of an essential anti-inflammatory molecule involved in sepsis response, Lipocalin 2 aka NGAL. Identical results were obtained in human PBMC following the endotoxin tolerance model. When using FRA-1 deficient macrophages, we could confirm that FRA-1 regulates NGAL expression during the tolerant state. Interestingly, ChIP-seq and ChIP-qPCR revealed the binding of FRA-1 on Lcn2 promoter after LPS stimulation in these cells. Finally, we used an in vivo septic model of consecutive injection of LPS, in which the second stimulation is performed before the resolution of inflammation, in wild type and FRA-1 deficient mice. NGAL secretion was elevated in lung, spleen and serum of wild type tolerant mice, whereas it was significantly lower in tolerant FRA-1 deficient mice. Moreover, an increased inflammatory state likely dependent of the low level of NGAL was observed in these FRA-1 deficient mice. This was characterized by an increase of neutrophil infiltration in lung and an increase of apoptotic follicular cells in spleen. This suggests that FRA-1 expression supports resolution of inflammation in this model. Collectively, our data indicate that FRA-1 is involved in myeloid cell tolerance responses by mediating the functional reprogramming of Lcn2 transcription in response to prolonged LPS exposure. In conclusion, FRA-1 may have a protective role in the tolerance response of sepsis through the regulation of NGAL, leading to resolution of inflammation.


2021 ◽  
pp. ji2001449
Author(s):  
José Avendaño-Ortiz ◽  
Roberto Lozano-Rodríguez ◽  
Alejandro Martín-Quirós ◽  
Charbel Maroun-Eid ◽  
Verónica Terrón-Arcos ◽  
...  
Keyword(s):  

2021 ◽  
pp. 175342592110187
Author(s):  
Yang-chun Zhang ◽  
Jian-hong Xiao ◽  
Shao-jie Deng ◽  
Guo-liang Yi

TLRs recognizing PAMPS play a role in local immunity and participate in implant-associated loosening. TLR-mediated signaling is primarily regulated by IL-1 receptor associated kinase-M (IRAK-M) negatively and IRAK-4 positively. Our previous studies have proved that wear particles promote endotoxin tolerance in macrophages by inducing IRAK-M. However, whether IRAK-4 is involved in inflammatory osteolysis of wear particles basically, and the specific mechanism of IRAK-4 around loosened hip implants, is still unclear. IRAK-4 was studied in the interface membranes from patients in vivo and in particle-stimulated macrophages to clarify its role. Also, IL-1β and TNF-α levels were measured after particle and LPS stimulation in macrophages with or without IRAK-4 silenced by siRNA. Our results showed that the interface membranes around aseptic and septic loosened prosthesis expressed more IRAK-4 compared with membranes from osteoarthritic patients. IRAK-4 in macrophages increased upon particle and LPS stimulation. In the former, IL-1β and TNF-α levels were lower compared with those of LPS stimulation, and IRAK-4 siRNA could suppress production of pro-inflammatory cytokines. These findings suggest that besides IRAK-M, IRAK-4 also plays an important role in the local inflammatory reaction and contributes to prosthesis loosening.


2021 ◽  
Vol Publish Ahead of Print ◽  
Author(s):  
Yi-Jing Tao ◽  
Juan-Juan Zhao ◽  
Li-Hua Rao ◽  
Song Yang ◽  
Guo-Liang Zhang ◽  
...  
Keyword(s):  

2021 ◽  
Vol 10 (5) ◽  
pp. 1027
Author(s):  
Min Ji Lee ◽  
Tae Nyoung Chung ◽  
Ye Jin Park B. ◽  
Han A. Reum Lee ◽  
Jung Ho Lee ◽  
...  

Intra-abdominal infection (IAI) is a common and important cause of infectious mortality in intensive care units. Adequate source control and appropriate antimicrobial regimens are key in the management of IAI. In community-acquired IAI, guidelines recommend the use of different antimicrobial regimens according to severity. However, the evidence for this is weak. We investigated the effect of enterococcal coverage in antimicrobial regimens in a severe polymicrobial IAI model. We investigated the effects of imipenem/cilastatin (IMP) and ceftriaxone with metronidazole (CTX+M) in a rat model of severe IAI. We observed the survival rate and bacterial clearance rate. We identified the bacteria in blood culture. We measured lactate, alanine aminotransferase (ALT), creatinine, interleukin (IL)-6, IL-10, and reactive oxygen species (ROS) in the blood. Endotoxin tolerance of peripheral blood mononuclear cells (PBMCs) was also estimated to determine the level of immune suppression. In the severe IAI model, IMP improved survival and bacterial clearance compared to CTX+M. Enterococcus spp. were more frequently isolated in the CTX+M group. IMP also decreased plasma lactate, cytokine, and ROS levels. ALT and creatinine levels were lower in IMP group. In the mild-to-moderate IAI model, however, there was no survival difference between the groups. Immune suppression of PBMCs was observed in IAI model, and it was more prominent in the severe IAI model. Compared to CTX+M, IMP improved the outcome of rats in severe IAI model.


Biomolecules ◽  
2021 ◽  
Vol 11 (2) ◽  
pp. 164
Author(s):  
Joseph Gillen ◽  
Thunnicha Ondee ◽  
Devikala Gurusamy ◽  
Jiraphorn Issara-Amphorn ◽  
Nathan P. Manes ◽  
...  

Inflammatory response plays an essential role in the resolution of infections. However, inflammation can be detrimental to an organism and cause irreparable damage. For example, during sepsis, a cytokine storm can lead to multiple organ failures and often results in death. One of the strongest triggers of the inflammatory response is bacterial lipopolysaccharides (LPS), acting mostly through Toll-like receptor 4 (TLR4). Paradoxically, while exposure to LPS triggers a robust inflammatory response, repeated or prolonged exposure to LPS can induce a state of endotoxin tolerance, a phenomenon where macrophages and monocytes do not respond to new endotoxin challenges, and it is often associated with secondary infections and negative outcomes. The cellular mechanisms regulating this phenomenon remain elusive. We used metabolic measurements to confirm differences in the cellular metabolism of naïve macrophages and that of macrophages responding to LPS stimulation or those in the LPS-tolerant state. In parallel, we performed an unbiased secretome survey using quantitative mass spectrometry during the induction of LPS tolerance, creating the first comprehensive secretome profile of endotoxin-tolerant cells. The secretome changes confirmed that LPS-tolerant macrophages have significantly decreased cellular metabolism and that the proteins secreted by LPS-tolerant macrophages have a strong association with cell survival, protein metabolism, and the metabolism of reactive oxygen species.


Sign in / Sign up

Export Citation Format

Share Document