Effect of parameters on electro-Fenton process for removal of oil and grease from refinery wastewater

2018 ◽  
Vol 78 (5) ◽  
pp. 1159-1167 ◽  
Author(s):  
Behnam Heidari ◽  
Mohsen Soleimani ◽  
Nourollah Mirghaffari

Abstract The Fenton process is a useful and inexpensive type of advanced oxidation process for industrial wastewater treatment. This study was performed with the aim of using the steel slag as a catalyst in the heterogeneous Fenton process in order to reduce the chemical oxygen demand (COD) of oil refinery wastewater. The effects of various parameters including the reaction time (0.5, 1.0, 2.0, 3.0 and 4.0 h), pH (2.0, 3.0, 4.0, 5.0, 6.0 and 7.0), the concentration of steel slag (12.5, 25.0 and 37.5 g/L), and H2O2 concentration (100, 250, 400 and 500 mg/L) on the Fenton process were investigated. Furthermore, the effect of microwave irradiation on the process efficiency was studied by considering the optimum conditions of the mentioned parameters. The results showed that using 25.0 g/L of steel slag and 250 mg/L H2O2, at pH = 3.0, could reduce COD by up to 64% after 2.0 h. Also, microwave irradiation decreased the time of the process from 120 min to 25 min in the optimum conditions, but it consumed a high amount of energy. It could be concluded that steel slags had a high potential in the treatment of oil refinery wastewater through the Fenton process.


2013 ◽  
Vol 10 (1) ◽  
pp. 31-38 ◽  

The combinations of H2O2/Fe+2, UV/H2O2/Fe+2 and UV/H2O2 process were investigated on treatment of oil recovery industry wastewater. Treatment of oil recovery industry wastewater, a typical high pollution strength industrial wastewater (chemical oxygen deman (COD): 21000 mg l-1, biological oxygen demand (BOD): 8000 mg l-1, oil and grease:1140 mg l-1, total dissolved solids (TDS): 37000 mg l-1, total suspended solids: 2580 mg l-1), was carried out by batch oxidation processes. The optimal mass ratio for H2O2/Fe+2 yielding the highest COD removal was found to be 8.658 corresponding to 200.52 g 1-1 H2O2 and 23.16 g l-1 Fe+2 concentrations for 60 minutes reaction time. Fenton process gave a maximum COD reduction of 86% (from 21000 to 2980 mg l-1) and the combination of UV/H2O2 gave a COD reduction of 39% (from 21000 to 12730). The percentage of removal, after the total reaction time (3.5h), H2O2: 8.4 g l-1 and Fe+2: 0.05g l-1, in the photo Fenton process, corresponded to 81 % of the total initial COD (4200 mg l-1). The oxidative ability of the UV/Fe+2/H2O2 process (81%) was greater than that of the UV/H2O2 process (55%) for 80% diluted wastewater. COD removal efficiency for UV/H2O2 process (COD/H2O2=1/2 (w/w)) was 90%, 55%, and 39 when initial COD was 1050, 4200, and 21000 mg l-1, respectively, whereas COD removal was 943, 2320, and 8270 mg l-1, respectively.


1994 ◽  
Vol 29 (8) ◽  
pp. 47-50 ◽  
Author(s):  
Kee Kean Chin

Processes used in the treatment of a petroleum refinery wastewater included initial API oil separator to be followed by dissolved air flotation and an extended aeration system. The API oil separator removed most of the settleable solids and oil. The residual oil varied from around 680 mg/l to 104 mg/l and was further treated with chemical coagulation, flocculation and dissolved air flotation which remove more than 80 % of the oil and grease. Mean COD after dissolved air flotation was around 970 mg/l and it was lowered to around 378 mg/l using the extended aeration biological system at 15-day HRT. The final effluent COD/BOD ratio was high indicating the presence of a high percentage of refractory organic compounds.


2021 ◽  
pp. 103635
Author(s):  
Ahmed A. Hassan ◽  
Saba A. Gheni ◽  
Safaa M.R. Ahmed ◽  
Ghassan H. Abdullah ◽  
Adam Harvey

Membranes ◽  
2020 ◽  
Vol 10 (4) ◽  
pp. 77 ◽  
Author(s):  
Faris H. Al-Ani ◽  
Qusay F. Alsalhy ◽  
Rawia Subhi Raheem ◽  
Khalid T. Rashid ◽  
Alberto Figoli

This study investigated the impact of implanting TiO2-NPs within a membrane to minimize the influence of long-term operation on the membrane characteristics. Four poly vinyle chloride-titanium oxide (PVC-TiO2-NPs) membranes were prepared to create an ultrafiltration membrane (UF) that would effectively treat actual refinery wastewater. The hypothesis of this work was that TiO2-NPs would function as a hydrophilic modification of the PVC membrane and excellent self-cleaning material, which in turn would greatly extend the membrane’s lifetime. The membranes were characterized via Fourier transforms infrared spectroscopy (FTIR), X-ray diffraction (XRD), energy dispersive X-ray (EDX), atomic force microscope (AFM), and scanning electron microscope (SEM). The removal efficiency of turbidity, total suspended solid (TSS), oil and grease, heavy metals and chemical oxygen demand (COD) were investigated. Contact angle (CA) reduced by 12.7% and 27.5% on the top and bottom surfaces, respectively. The PVC membrane with TiO2-NPs had larger mean pore size on its surface and more holes with larger size inside the membrane structure. The addition of TiO2-NPs could remarkably enhance the antifouling property of the PVC membrane. The pure water permeability (PWP) of the membrane was enhanced by 95.3% with an increase of TiO2 to 1.5 gm/100gm. The PWP after backwashing was reduced from 22.3% for PVC to 10.1% with 1.5 gm TiO2-NPs. The long-term performance was improved from five days for PVC to 23 d with an increase in TiO2-NPs to 1.5 gm. The improvements of PVC-TiO2-NPs long-term were related to the enhancement of the hydrophilic character of the membrane and increase tensile strength due to the reinforcement effect of TiO2-NPs. These results clearly identify the impact of the TiO2-NPs content on the long-term PVC/TiO2-NPs performance and confirm our hypothesis that it is possible to use TiO2-NPs to effectively enhance the lifetime of membranes during their long-term operation.


2013 ◽  
Vol 119 ◽  
pp. 51-57 ◽  
Author(s):  
Bruno Santos ◽  
Claudia F. Galinha ◽  
João G. Crespo ◽  
Maria António Santos ◽  
Svetlozar Velizarov

2021 ◽  
Vol 9 (1) ◽  
pp. 104894
Author(s):  
C. González ◽  
M.I. Pariente ◽  
R. Molina ◽  
M.O. Masa ◽  
L.G. Espina ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document