rapid removal
Recently Published Documents


TOTAL DOCUMENTS

573
(FIVE YEARS 193)

H-INDEX

49
(FIVE YEARS 14)

2022 ◽  
Vol 25 ◽  
pp. 100596
Author(s):  
Minh-Thuan Pham ◽  
Truc-Mai T. Nguyen ◽  
Dai-Phat Bui ◽  
Ya-Fen Wang ◽  
Hong-Huy Tran ◽  
...  

2022 ◽  
Vol 423 ◽  
pp. 126958 ◽  
Author(s):  
Qaisar Maqbool ◽  
Gianni Barucca ◽  
Simona Sabbatini ◽  
Marco Parlapiano ◽  
Maria Letizia Ruello ◽  
...  

Author(s):  
Tim Nutbeam ◽  
Rob Fenwick ◽  
Barbara May ◽  
Willem Stassen ◽  
Jason E. Smith ◽  
...  

Abstract Background Motor vehicle collisions are a common cause of death and serious injury. Many casualties will remain in their vehicle following a collision. Trapped patients have more injuries and are more likely to die than their untrapped counterparts. Current extrication methods are time consuming and have a focus on movement minimisation and mitigation. The optimal extrication strategy and the effect this extrication method has on spinal movement is unknown. The aim of this study was to evaluate the movement at the cervical and lumbar spine for four commonly utilised extrication techniques. Methods Biomechanical data was collected using inertial Measurement Units on 6 healthy volunteers. The extrication types examined were: roof removal, b-post rip, rapid removal and self-extrication. Measurements were recorded at the cervical and lumbar spine, and in the anteroposterior (AP) and lateral (LAT) planes. Total movement (travel), maximal movement, mean, standard deviation and confidence intervals are reported for each extrication type. Results Data from a total of 230 extrications were collected for analysis. The smallest maximal and total movement (travel) were seen when the volunteer self-extricated (AP max = 2.6 mm, travel 4.9 mm). The largest maximal movement and travel were seen in rapid extrication extricated (AP max = 6.21 mm, travel 20.51 mm). The differences between self-extrication and all other methods were significant (p < 0.001), small non-significant differences existed between roof removal, b-post rip and rapid removal. Self-extrication was significantly quicker than the other extrication methods (mean 6.4 s). Conclusions In healthy volunteers, self-extrication is associated with the smallest spinal movement and the fastest time to complete extrication. Rapid, B-post rip and roof off extrication types are all associated with similar movements and time to extrication in prepared vehicles.


Atmosphere ◽  
2022 ◽  
Vol 13 (1) ◽  
pp. 102
Author(s):  
Baoping Xu ◽  
Yuekang Liu ◽  
Yanzhe Dou ◽  
Ling Hao ◽  
Xi Wang ◽  
...  

Material emission and ventilation are two aspects influencing indoor air quality. In this study, a model predictive control (MPC) strategy is proposed for intermittent ventilation system in office buildings, to achieve a healthy indoor environment. The strategy is based on a dynamic model for predicting emissions of volatile organic compounds (VOCs) from materials. The key parameters of formaldehyde from panel furniture in the model are obtained by an improved C-history method and large-scale chamber experiments. The effectiveness of the determined key parameters is validated, which are then used to predict the formaldehyde concentration variation and the pre-ventilation time in a typical office room. In addition, the influence of some main factors (i.e., vacant time, loading ratio, air change rate) on the pre-ventilation time is analyzed. Results indicate that the pre-ventilation time of the intermittent ventilation system ranges from several minutes to several hours. The pre-ventilation time decreases exponentially with the increase in the vacant time, the air change rate, and with the decrease in the loading ratio. When the loading ratio of the furniture is 0.30 m2/m3 and the vacant time is 100 days, the required pre-ventilation time approaches zero. Results further reveal that an air change rate of 2 h−1 is the most effective means for rapid removal of indoor formaldehyde for the cases studied. The proposed strategy should be helpful for achieving effective indoor pollution control.


Author(s):  
Siwei Yang ◽  
Qiang Sun ◽  
Weihang Han ◽  
Yuanfang Shen ◽  
Zhigang Ni ◽  
...  

A simple and high efficient porous composites via the solvent evaporation method using g-C3N4 and NiSO4 was developed. It can super rapidly remove multiple organic dyes in water including rhodamine...


2021 ◽  
Author(s):  
Zheng Jiang ◽  
Zengfang Zhuang ◽  
Kaixia Mi

Understanding how Mycobacterium tuberculosis has evolved into a professional pathogen is helpful in studying its pathogenesis and for designing vaccines. We investigated how the evolutionary adaptation of M. smegmatis mc251 to an important clinical stressor H2O2 allows bacteria undergo coordinated genetic mutations, resulting in increased pathogenicity. Whole-genome sequencing identified a mutation site in the fur gene, which caused increased expression of katG. Using a Wayne dormancy model, mc251 showed a growth advantage over its parental strain mc2155 in recovering from dormancy under anaerobic conditions. Meanwhile, the high level of KatG in mc251 was accompanied by a low level of ATP, which meant that mc251 is at a low respiratory level. Additionally, the redox-related protein Rv1996 showed different phenotypes in different specific redox states in M. smegmatis mc2155, mc251, M. bovis BCG and M. tuberculosis mc27000. In conclusion, our study shows that the same gene presents different phenotypes under different physiological conditions. This may partly explain why M. smegmatis and M. tuberculosis have similar virulence factors and signaling transduction systems such as two-component systems and sigma factors, but due to the different redox states in the corresponding bacteria, M. smegmatis is a nonpathogen, while M. tuberculosis is a pathogen. As mc251 overcomes its shortcomings of rapid removal, it can be potentially developed as a vaccine vector.


2021 ◽  
pp. 103635
Author(s):  
Ahmed A. Hassan ◽  
Saba A. Gheni ◽  
Safaa M.R. Ahmed ◽  
Ghassan H. Abdullah ◽  
Adam Harvey

Processes ◽  
2021 ◽  
Vol 9 (12) ◽  
pp. 2110
Author(s):  
Tra Huong Do ◽  
Xuan Linh Ha ◽  
Thi Tu Anh Duong ◽  
Phuong Chi Nguyen ◽  
Ngoc Bich Hoang ◽  
...  

The ciprofloxacin (CIP) removal ability of a Fe-Cu electrolytic material was examined with respect to pH (2–9), time (15–150 min), shaking speed (100–250 rpm), material mass (0.2–3 g/L), temperature (298, 308, 323) and initial CIP concentration (30–200 mg/L). The Fe-Cu electrolytic materials were fabricated by the chemical plating method, and Fe-C materials were mechanically mixed from iron powder and graphite. The results show that at a pH value of 3, shaking time 120 min, shaking speed 250 rpm, a mass of Fe-Cu, Fe-C material of 2 g/L and initial CIP concentration of 203.79 mg/L, the CIP removal efficiency of Fe-Cu material reached 90.25% and that of Fe-C material was 85.12%. The removal of CIP on Fe-Cu and Fe-C materials follows pseudo-first-order kinetics. The activation energy of CIP removal of Fe-Cu material is 14.93 KJ/mol and of Fe-C material is 16.87 KJ/mol. The positive ΔH proves that CIP removal is endothermic. A negative entropy of 0.239 kJ/mol and 0.235 kJ/mol (which is near zero and is also relatively positive) indicated the rapid removal of the CIP molecules into the removed products.


Sign in / Sign up

Export Citation Format

Share Document