Dynamics of a Prey and Generalized-Predator System with Disease in Prey and Gestation Delay for Predator in Single Patch Habitat

2019 ◽  
Vol 29 (14) ◽  
pp. 1950195 ◽  
Author(s):  
Ankit Kumar ◽  
Balram Dubey

Recently, some field experiments and studies show that predators affect prey not only by direct killing, they induce fear in prey which reduces the reproduction rate of prey species. Considering this fact, we propose a mathematical model to study the fear effect and prey refuge in prey–predator system with gestation time delay. It is assumed that prey population grows logistically in the absence of predators and the interaction between prey and predator is followed by Crowley–Martin type functional response. We obtained the equilibrium points and studied the local and global asymptotic behaviors of nondelayed system around them. It is observed from our analysis that the fear effect in the prey induces Hopf-bifurcation in the system. It is concluded that the refuge of prey population under a threshold level is lucrative for both the species. Further, we incorporate gestation delay of the predator population in the model. Local and global asymptotic stabilities for delayed model are carried out. The existence of stable limit cycle via Hopf-bifurcation with respect to delay parameter is established. Chaotic oscillations are also observed and confirmed by drawing the bifurcation diagram and evaluating maximum Lyapunov exponent for large values of delay parameter.


2018 ◽  
Vol 26 (02) ◽  
pp. 339-372 ◽  
Author(s):  
D. PAL ◽  
G. S. MAHAPATRA ◽  
G. P. SAMANTA

In this work, a fuzzy prey–predator system with time delay is proposed. The model consists of two preys and one predator. The biological coefficients/parameters are considered as imprecise in nature and quantified by triangular fuzzy numbers. We have studied the effect of gestation delay on the stability of the system in fuzzy environment. The signed distance method for the defuzzification of the proposed fuzzy prey–predator system is adopted. For the underlying fuzzy model, we have provided a solution procedure to find all possible equilibrium points and studied their stabilities in the fuzzy sense. It is observed that there are stability switches, and Hopf-bifurcation occurs when the delay crosses some critical value in fuzzy sense. Numerical illustrations are provided in crisp as well as fuzzy environment with the help of graphical presentations to support our proposed approach.


Author(s):  
A. George Maria Selvam ◽  
◽  
R. Janagaraj ◽  
Britto Jacob. S ◽  
◽  
...  

2020 ◽  
Vol 2020 ◽  
pp. 1-19
Author(s):  
Dahlia Khaled Bahlool ◽  
Huda Abdul Satar ◽  
Hiba Abdullah Ibrahim

In this paper, a mathematical model consisting of a prey-predator system incorporating infectious disease in the prey has been proposed and analyzed. It is assumed that the predator preys upon the nonrefugees prey only according to the modified Holling type-II functional response. There is a harvesting process from the predator. The existence and uniqueness of the solution in addition to their bounded are discussed. The stability analysis of the model around all possible equilibrium points is investigated. The persistence conditions of the system are established. Local bifurcation analysis in view of the Sotomayor theorem is carried out. Numerical simulation has been applied to investigate the global dynamics and specify the effect of varying the parameters. It is observed that the system has a chaotic dynamics.


1986 ◽  
Vol 122 (3) ◽  
pp. 251-262 ◽  
Author(s):  
Hiroyuki Matsuda ◽  
Kohkichi Kawasaki ◽  
Nanako Shigesada ◽  
Ei Teramoto ◽  
Luigi M. Ricciardi

Sign in / Sign up

Export Citation Format

Share Document