cooperative hunting
Recently Published Documents





Oussama Hamed ◽  
Mohamed Hamlich ◽  
Mohamed Ennaji

The cooperation and coordination in multi-robot systems is a popular topic in the field of robotics and artificial intelligence, thanks to its important role in solving problems that are better solved by several robots compared to a single robot. Cooperative hunting is one of the important problems that exist in many areas such as military and industry, requiring cooperation between robots in order to accomplish the hunting process effectively. This paper proposed a cooperative hunting strategy for a multi-robot system based on wolf swarm algorithm (WSA) and artificial potential field (APF) in order to hunt by several robots a dynamic target whose behavior is unexpected. The formation of the robots within the multi-robot system contains three types of roles: the leader, the follower, and the antagonist. Each role is characterized by a different cognitive behavior. The robots arrive at the hunting point accurately and rapidly while avoiding static and dynamic obstacles through the artificial potential field algorithm to hunt the moving target. Simulation results are given in this paper to demonstrate the validity and the effectiveness of the proposed strategy.

Mathematics ◽  
2021 ◽  
Vol 9 (24) ◽  
pp. 3193
Yanfei Du ◽  
Ben Niu ◽  
Junjie Wei

This paper deals with a diffusive predator–prey model with two delays. First, we consider the local bifurcation and global dynamical behavior of the kinetic system, which is a predator–prey model with cooperative hunting and Allee effect. For the model with weak cooperation, we prove the existence of limit cycle, and a loop of heteroclinic orbits connecting two equilibria at a threshold of conversion rate p=p#, by investigating stable and unstable manifolds of saddles. When p>p#, both species go extinct, and when p<p#, there is a separatrix. The species with initial population above the separatrix finally become extinct, and the species with initial population below it can be coexisting, oscillating sustainably, or surviving of the prey only. In the case with strong cooperation, we exhibit the complex dynamics of system, including limit cycle, loop of heteroclinic orbits among three equilibria, and homoclinic cycle with the aid of theoretical analysis or numerical simulation. There may be three stable states coexisting: extinction state, coexistence or sustained oscillation, and the survival of the prey only, and the attraction basin of each state is obtained in the phase plane. Moreover, we find diffusion may induce Turing instability and Turing–Hopf bifurcation, leaving the system with spatially inhomogeneous distribution of the species, coexistence of two different spatial-temporal oscillations. Finally, we consider Hopf and double Hopf bifurcations of the diffusive system induced by two delays: mature delay of the prey and gestation delay of the predator. Normal form analysis indicates that two spatially homogeneous periodic oscillations may coexist by increasing both delays.

2021 ◽  
Vol 8 (9) ◽  
pp. 210828
Hanaa Sarhan ◽  
Redouan Bshary

Lionfish are common piscivores in the Indo-Pacific and invasive in the Caribbean. A fin flaring pattern, involving a rapid undulation of the caudal fin and sequential turning of both pectoral fins, was described in zebra lionfish as a signal to initiate cooperative hunting, and it was hypothesized that such hunting tactics may also exist in other lionfish species and contribute to their successful invasion in the Caribbean. Here, we investigated one of those invasive species, Pterois miles , in its natural range in the Red Sea. We did not observe evidence for cooperative hunting in the field. We complemented field observations with a laboratory experiment aimed at inducing subjects to recruit partners for cooperative hunts, exposing subjects to inaccessible prey in transparent housing as well as to a potential partner. We regularly observed the fin flaring pattern, but importantly, it was not directed at the partner. Thus, rather than being a signal, the fin flaring movement pattern seems to be a swimming mode in a confined environment. Furthermore, the two lionfish did not aggregate at the prey housing, reinforcing the field results that this species in the Red Sea does not depend on cooperation to hunt fish.

2021 ◽  
Yong Yao ◽  
Teng Song ◽  
Zuxiong Li

Abstract In this paper, we consider the dynamics of a predator-prey system of Gause type with cooperative hunting among predators and Holling III functional response. The known work numerically shows that the system exhibits saddle-node and Hopf bifurcations except homoclinic bifurcation for some special parameter values. Our results show that there are a weak focus of multiplicity three and a cusp of codimension two for general parameter conditions and the system can exhibit various bifurcations as perturbing the bifurcation parameters appropriately, such as the transcritical and the pitchfork bifurcations at the degenerate boundary equilibrium, the saddle-node and the Bogdanov-Takens bifurcations at the degenerate positive equilibrium and the Hopf bifurcation around the weak focus. The comparative study demonstrates that the dynamics are far richer and more complex than that of the system without cooperative hunting among predators. The analysis results reveal that appropriate intensity of cooperative hunting among predators is beneficial for the persistence of predators and the diversity of ecosystem.

2021 ◽  
Vol 118 (22) ◽  
pp. e2026534118
Vikram Chandra ◽  
Asaf Gal ◽  
Daniel J. C. Kronauer

The mass raids of army ants are an iconic collective phenomenon, in which many thousands of ants spontaneously leave their nest to hunt for food, mostly other arthropods. While the structure and ecology of these raids have been relatively well studied, how army ants evolved such complex cooperative behavior is not understood. Here, we show that army ant mass raiding has evolved from a different form of cooperative hunting called group raiding, in which a scout directs a small group of ants to a specific target through chemical communication. We describe the structure of group raids in the clonal raider ant, a close relative of army ants in the subfamily Dorylinae. We find evidence that the coarse structure of group raids and mass raids is highly conserved and that all doryline ants likely follow similar behavioral rules for raiding. We also find that the evolution of army ant mass raiding occurred concurrently with expansions in colony size. By experimentally increasing colony size in the clonal raider ant, we show that mass raiding gradually emerges from group raiding without altering individual behavioral rules. This suggests that increasing colony size can explain the evolution of army ant mass raids and supports the idea that complex social behaviors may evolve via mechanisms that need not alter the behavioral interaction rules that immediately underlie the collective behavior of interest.

Sara Torres Ortiz ◽  
Johanna Stedt ◽  
Henrik Skov Midtiby ◽  
Henrik Dyrberg Egemose ◽  
Magnus Wahlberg

Cooperative hunting involves individual predators relating in time and space to each other’s actions to more efficiently track down and catch prey. The evolution of advanced cognitive abilities and sociality in animals are strongly associated with cooperative hunting abilities, as has been shown in lions, chimpanzees and dolphins. Much less is known about cooperative hunting in seemingly unsocial animals, such as the harbour porpoise (Phocoena phocoena Linnaeus, 1758). Using drones, we were able to record 159 hunting sequences of porpoises, out of which 95 sequences involved more than one porpoise. To better understand if the harbour porpoises were individually attracted by the fish school or formed an organized hunting strategy, the behaviour of each individual porpoise in relation to the targeted fish school was analysed. The results indicate role specialization, which is considered the most sophisticated form of collaborative hunting and only rarely seen in animals. Our study challenges previous knowledge about harbour porpoises and opens up for the possibility of other seemingly non-social species employing sophisticated collaborative hunting methods.

2021 ◽  
pp. 1-17

We derive models of stochastic differential equations describing predator–prey interactions with cooperative hunting in predators based on a deterministic system proposed by Alves and Hilker. The deterministic model is analyzed first by providing a critical degree of cooperation below which the predators go extinct globally. Above the critical threshold, the deterministic model has two coexisting steady states and predators may persist depending on initial conditions. One of the stochastic models is derived from a continuous-time Markov chain while the other is based on a mean reverting process. Using Euler–Maruyama approximations, we investigate the stochastic systems numerically by providing estimated probabilities of predator extinction in the parameter regimes for which the predators cooperate intensively. It is found that predators may go extinct in the stochastic setting when they can otherwise survive indefinitely in the deterministic setting. The estimated probabilities of extinction are overall larger if populations are oscillating in the ODE system.

2021 ◽  
Vol 0 (0) ◽  
Giacomo Figà Talamanca

Abstract Joint action among human beings is characterized by using elaborate cognitive feats, such as representing the mental states of others about a certain state of affairs. It is still debated how these capacities evolved in the hominid lineage. I suggest that the consolidation of a shared practice over time can foster the predictability of other’s behavior. This might facilitate the evolutionary passage from inferring what others might know by simply seeing them and what they are viewing towards a mutual awareness of each other’s beliefs. I will examine the case for cooperative hunting in one chimpanzee community and argue that it is evidence that they have the potential to achieve common ground, suggesting that the consolidation of a practice might have supported the evolution of higher social cognition in the hominid lineage.

Sign in / Sign up

Export Citation Format

Share Document