Unsupervised Change Detection in Multi-Temporal SAR Images

2007 ◽  
pp. 123-150
2020 ◽  
Vol 12 (3) ◽  
pp. 548 ◽  
Author(s):  
Xinzheng Zhang ◽  
Guo Liu ◽  
Ce Zhang ◽  
Peter M. Atkinson ◽  
Xiaoheng Tan ◽  
...  

Change detection is one of the fundamental applications of synthetic aperture radar (SAR) images. However, speckle noise presented in SAR images has a negative effect on change detection, leading to frequent false alarms in the mapping products. In this research, a novel two-phase object-based deep learning approach is proposed for multi-temporal SAR image change detection. Compared with traditional methods, the proposed approach brings two main innovations. One is to classify all pixels into three categories rather than two categories: unchanged pixels, changed pixels caused by strong speckle (false changes), and changed pixels formed by real terrain variation (real changes). The other is to group neighbouring pixels into superpixel objects such as to exploit local spatial context. Two phases are designed in the methodology: (1) Generate objects based on the simple linear iterative clustering (SLIC) algorithm, and discriminate these objects into changed and unchanged classes using fuzzy c-means (FCM) clustering and a deep PCANet. The prediction of this Phase is the set of changed and unchanged superpixels. (2) Deep learning on the pixel sets over the changed superpixels only, obtained in the first phase, to discriminate real changes from false changes. SLIC is employed again to achieve new superpixels in the second phase. Low rank and sparse decomposition are applied to these new superpixels to suppress speckle noise significantly. A further clustering step is applied to these new superpixels via FCM. A new PCANet is then trained to classify two kinds of changed superpixels to achieve the final change maps. Numerical experiments demonstrate that, compared with benchmark methods, the proposed approach can distinguish real changes from false changes effectively with significantly reduced false alarm rates, and achieve up to 99.71% change detection accuracy using multi-temporal SAR imagery.


2021 ◽  
Vol 21 (2) ◽  
pp. 45-57
Author(s):  
J. Thrisul Kumar ◽  
B. M. S. Rani ◽  
M. Satish Kumar ◽  
M. V. Raju ◽  
K. Maria Das

Abstract In this paper, the main objective is to detect changes in the geographical area of Ottawa city in Canada due to floods. Two multi-temporal Synthetic Aperture Radar (SAR) images have been taken to evaluate the un-supervised change detection process. In this process, two ratio operators named as Log-Ratio and Mean-Ratio are used to generate a difference image. Performing image fusion based on DWT by selecting optimum filter coefficients by satisfying the wavelet filter coefficient properties through a novel image fusion technique is named as ADWT. GA, PSO, AntLion Optimization algorithms (ALO) and Hybridized AntLion Algorithm (HALO) have been adapted to perform the ADWT based image fusion. Segmentation has been performed based on fuzzy c-Means clustering to detect changed and unchanged pixels. Finally, the performance of the proposed method will be analysed by comparing the segmented image with the ground truth image in terms of sensitivity, accuracy, specificity, precision, F1-score.


Author(s):  
C. H. Yang ◽  
Y. Pang ◽  
U. Soergel

Monitoring urban changes is important for city management, urban planning, updating of cadastral map, etc. In contrast to conventional field surveys, which are usually expensive and slow, remote sensing techniques are fast and cost-effective alternatives. Spaceborne synthetic aperture radar (SAR) sensors provide radar images captured rapidly over vast areas at fine spatiotemporal resolution. In addition, the active microwave sensors are capable of day-and-night vision and independent of weather conditions. These advantages make multi-temporal SAR images suitable for scene monitoring. Persistent scatterer interferometry (PSI) detects and analyses PS points, which are characterized by strong, stable, and coherent radar signals throughout a SAR image sequence and can be regarded as substructures of buildings in built-up cities. Attributes of PS points, for example, deformation velocities, are derived and used for further analysis. Based on PSI, a 4D change detection technique has been developed to detect disappearance and emergence of PS points (3D) at specific times (1D). In this paper, we apply this 4D technique to the centre of Berlin, Germany, to investigate its feasibility and application for construction monitoring. The aims of the three case studies are to monitor construction progress, business districts, and single buildings, respectively. The disappearing and emerging substructures of the buildings are successfully recognized along with their occurrence times. The changed substructures are then clustered into single construction segments based on DBSCAN clustering and α-shape outlining for object-based analysis. Compared with the ground truth, these spatiotemporal results have proven able to provide more detailed information for construction monitoring.


Sign in / Sign up

Export Citation Format

Share Document