Experimental Investigation of the Effects of Surface Geometry on the Flight of a Non-Spinning Soccer Ball

Author(s):  
T Asai ◽  
K Seo ◽  
M Carr√© ◽  
S Barber
Author(s):  
Amy S. Fleischer ◽  
Sharareh R. Nejad

An experimental investigation to understand the influence of the impingement surface geometry on the heat transfer from a discretely heated surface to a single round impinging jet is conducted. In this study, heat transfer at the stagnation region of a discretely heated pedestal protruding into an air stream is compared to the heat transfer on a discretely heated flat plate to determine the influence of impingement surface geometry on heat transfer for various Reynolds numbers, jet diameters and jet exit-surface spacings. The round jet issues from a tube of diameter 3.5 mm, 9.5 mm or 21 mm at jet exit-to-surface distances of 2–5 diameters with Re = 10,000–30,000. Under all operating conditions, the presence of a protruding pedestal is found to increase heat transfer.


2010 ◽  
Vol 13 (1) ◽  
pp. 47-55 ◽  
Author(s):  
S. Barber ◽  
M. J. Carré

1987 ◽  
Vol 109 (3) ◽  
pp. 249-256 ◽  
Author(s):  
T. L. Bowen ◽  
D. P. Guimond ◽  
R. K. Muench

This paper discusses an experimental investigation of recuperator fouling currently underway at the David Taylor Naval Ship Research and Development Center. The overall approach involves testing different heat exchangers in the exhaust gas stream of a gas turbine. The two heat exchangers initially tested were the plate-fin type and differed in the gas-side heat transfer surface geometry. Primary surface heat exchangers are being considered for future tests also. Test conditions are defined such that the critical part of full-scale recuperators (i.e., the colder end of the gas passages) is simulated in the small test heat exchangers. The composition of the gas stream is measured to determine amounts of gaseous, particulate, and condensible hydrocarbon emissions. Fuel samples taken during each test are analyzed. The test heat exchangers are specially constructed to allow inspection and measurement of the fouling film inside the unit following each test. The temperature distribution inside the test exchanger is measured, as well as air and gas inlet and exit temperatures. Measurements of fouling film thickness are made using an optical microscope and photographs of fouling deposits were taken. The early results obtained from fouling tests conducted with the first heat exchanger are discussed. Tests were also conducted to demonstrate a fouling removal technique.


2014 ◽  
Author(s):  
Shane Close ◽  
Victoria Adkins ◽  
Kandice Perry ◽  
Katheryn Eckles ◽  
Jill Brown ◽  
...  

2004 ◽  
Author(s):  
Mustapha Mouloua ◽  
Janan Smither ◽  
Robert C. Kennedy ◽  
Robert S. Kenned ◽  
Dan Compton ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document