Physicochemical basis of the digestion and absorption of triacylglycerol

Author(s):  
C Lo ◽  
P Tso
Catalysts ◽  
2019 ◽  
Vol 9 (3) ◽  
pp. 281 ◽  
Author(s):  
Iván Santamaría-Holek ◽  
Saúl Hernández ◽  
Consuelo García-Alcántara ◽  
Aldo Ledesma-Durán

We review and generalize a recent theoretical framework that provides a sound physicochemical basis to describe how volume and surface diffusion are affected by adsorption and desorption processes, as well as by catalytic conversion within the space defined by the irregular geometry of the pores in a material. The theory is based on two single-dimensional mass conservation equations for irregular domains deduced for the volumetric (bulk) and surface mass concentrations. It offers a powerful tool for analyzing and modeling mass transport across porous media like zeolites or artificially build materials, since it establishes how the microscopic quantities that refer to the internal details of the geometry, the flow and the interactions within the irregular pore can be translated into macroscopic variables that are currently measured in experiments. The use of the theory in mass uptake experiments is explained in terms of breakthrough curves and effective mass diffusion coefficients which are explicitly related to the internal geometry of the pores.


2001 ◽  
Vol 83 (7) ◽  
pp. 770-775 ◽  
Author(s):  
Choong ◽  
Hallson ◽  
Whitfield ◽  
Fry

2021 ◽  
Vol 1038 ◽  
pp. 177-184
Author(s):  
Oksana Borisenko ◽  
Sergey Logvinkov ◽  
Galina Shabanova ◽  
Oksana Myrgorod

The basis of modern materials science is multicomponent systems, on their basis it is possible to create various combinations of phases in structural materials with a set of specified properties. The investigated system MgO-Al2O3-FeO-TiO2 is promising for the production of periclase-spinel refractories used as lining of rotary kilns during cement clinker firing, which are highly resistant to chemical corrosion when exposed to a gas environment and cement clinker components; thermomechanical stresses. However, in the reference literature and scientific articles, no information was found on the structure of the four-component diagram of the state of the MgO-Al2O3-FeO-TiO2 system, partial elements of its structure are given only in the composition of multicomponent systems [1-3]. Thus, research to the study of the subsolidus structure of the MgO-Al2O3-FeO-TiO2 system, which is the physicochemical basis for the development of compositions of periclase-spinel refractories, is urgent.


Sign in / Sign up

Export Citation Format

Share Document